| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre |  | 
						
							| 2 |  | nnre |  | 
						
							| 3 |  | nnre |  | 
						
							| 4 |  | nngt0 |  | 
						
							| 5 | 3 4 | jca |  | 
						
							| 6 |  | ltdiv1 |  | 
						
							| 7 | 1 2 5 6 | syl3an |  | 
						
							| 8 |  | nnsub |  | 
						
							| 9 | 7 8 | sylan9bb |  | 
						
							| 10 | 9 | biimpd |  | 
						
							| 11 | 10 | exp32 |  | 
						
							| 12 | 11 | com34 |  | 
						
							| 13 | 12 | imp32 |  | 
						
							| 14 |  | nnaddcl |  | 
						
							| 15 | 14 | expcom |  | 
						
							| 16 |  | nnsscn |  | 
						
							| 17 |  | nnne0 |  | 
						
							| 18 |  | divcl |  | 
						
							| 19 | 16 17 18 | nnssi2 |  | 
						
							| 20 |  | divcl |  | 
						
							| 21 | 16 17 20 | nnssi2 |  | 
						
							| 22 | 19 21 | anim12i |  | 
						
							| 23 | 22 | 3impdir |  | 
						
							| 24 |  | npcan |  | 
						
							| 25 | 24 | ancoms |  | 
						
							| 26 | 23 25 | syl |  | 
						
							| 27 | 26 | eleq1d |  | 
						
							| 28 | 27 | biimpd |  | 
						
							| 29 | 15 28 | sylan9r |  | 
						
							| 30 | 29 | adantrr |  | 
						
							| 31 | 13 30 | impbid |  | 
						
							| 32 |  | nncn |  | 
						
							| 33 | 32 | 3ad2ant2 |  | 
						
							| 34 |  | nncn |  | 
						
							| 35 | 34 | 3ad2ant1 |  | 
						
							| 36 |  | nncn |  | 
						
							| 37 | 36 17 | jca |  | 
						
							| 38 | 37 | 3ad2ant3 |  | 
						
							| 39 |  | divsubdir |  | 
						
							| 40 | 33 35 38 39 | syl3anc |  | 
						
							| 41 | 40 | eleq1d |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 | 31 42 | bitr4d |  |