Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
|
2 |
|
nnre |
|
3 |
|
nnre |
|
4 |
|
nngt0 |
|
5 |
3 4
|
jca |
|
6 |
|
ltdiv1 |
|
7 |
1 2 5 6
|
syl3an |
|
8 |
|
nnsub |
|
9 |
7 8
|
sylan9bb |
|
10 |
9
|
biimpd |
|
11 |
10
|
exp32 |
|
12 |
11
|
com34 |
|
13 |
12
|
imp32 |
|
14 |
|
nnaddcl |
|
15 |
14
|
expcom |
|
16 |
|
nnsscn |
|
17 |
|
nnne0 |
|
18 |
|
divcl |
|
19 |
16 17 18
|
nnssi2 |
|
20 |
|
divcl |
|
21 |
16 17 20
|
nnssi2 |
|
22 |
19 21
|
anim12i |
|
23 |
22
|
3impdir |
|
24 |
|
npcan |
|
25 |
24
|
ancoms |
|
26 |
23 25
|
syl |
|
27 |
26
|
eleq1d |
|
28 |
27
|
biimpd |
|
29 |
15 28
|
sylan9r |
|
30 |
29
|
adantrr |
|
31 |
13 30
|
impbid |
|
32 |
|
nncn |
|
33 |
32
|
3ad2ant2 |
|
34 |
|
nncn |
|
35 |
34
|
3ad2ant1 |
|
36 |
|
nncn |
|
37 |
36 17
|
jca |
|
38 |
37
|
3ad2ant3 |
|
39 |
|
divsubdir |
|
40 |
33 35 38 39
|
syl3anc |
|
41 |
40
|
eleq1d |
|
42 |
41
|
adantr |
|
43 |
31 42
|
bitr4d |
|