Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
2 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
3 |
|
nnre |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℝ ) |
4 |
|
nngt0 |
⊢ ( 𝐶 ∈ ℕ → 0 < 𝐶 ) |
5 |
3 4
|
jca |
⊢ ( 𝐶 ∈ ℕ → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
6 |
|
ltdiv1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ) ) |
7 |
1 2 5 6
|
syl3an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ) ) |
8 |
|
nnsub |
⊢ ( ( ( 𝐴 / 𝐶 ) ∈ ℕ ∧ ( 𝐵 / 𝐶 ) ∈ ℕ ) → ( ( 𝐴 / 𝐶 ) < ( 𝐵 / 𝐶 ) ↔ ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ ) ) |
9 |
7 8
|
sylan9bb |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 / 𝐶 ) ∈ ℕ ∧ ( 𝐵 / 𝐶 ) ∈ ℕ ) ) → ( 𝐴 < 𝐵 ↔ ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ ) ) |
10 |
9
|
biimpd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 / 𝐶 ) ∈ ℕ ∧ ( 𝐵 / 𝐶 ) ∈ ℕ ) ) → ( 𝐴 < 𝐵 → ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ ) ) |
11 |
10
|
exp32 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 / 𝐶 ) ∈ ℕ → ( ( 𝐵 / 𝐶 ) ∈ ℕ → ( 𝐴 < 𝐵 → ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ ) ) ) ) |
12 |
11
|
com34 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 / 𝐶 ) ∈ ℕ → ( 𝐴 < 𝐵 → ( ( 𝐵 / 𝐶 ) ∈ ℕ → ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ ) ) ) ) |
13 |
12
|
imp32 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 / 𝐶 ) ∈ ℕ ∧ 𝐴 < 𝐵 ) ) → ( ( 𝐵 / 𝐶 ) ∈ ℕ → ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ ) ) |
14 |
|
nnaddcl |
⊢ ( ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ ∧ ( 𝐴 / 𝐶 ) ∈ ℕ ) → ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) + ( 𝐴 / 𝐶 ) ) ∈ ℕ ) |
15 |
14
|
expcom |
⊢ ( ( 𝐴 / 𝐶 ) ∈ ℕ → ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ → ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) + ( 𝐴 / 𝐶 ) ) ∈ ℕ ) ) |
16 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
17 |
|
nnne0 |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ≠ 0 ) |
18 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
19 |
16 17 18
|
nnssi2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
20 |
|
divcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
21 |
16 17 20
|
nnssi2 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
22 |
19 21
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ) → ( ( 𝐴 / 𝐶 ) ∈ ℂ ∧ ( 𝐵 / 𝐶 ) ∈ ℂ ) ) |
23 |
22
|
3impdir |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 / 𝐶 ) ∈ ℂ ∧ ( 𝐵 / 𝐶 ) ∈ ℂ ) ) |
24 |
|
npcan |
⊢ ( ( ( 𝐵 / 𝐶 ) ∈ ℂ ∧ ( 𝐴 / 𝐶 ) ∈ ℂ ) → ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) + ( 𝐴 / 𝐶 ) ) = ( 𝐵 / 𝐶 ) ) |
25 |
24
|
ancoms |
⊢ ( ( ( 𝐴 / 𝐶 ) ∈ ℂ ∧ ( 𝐵 / 𝐶 ) ∈ ℂ ) → ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) + ( 𝐴 / 𝐶 ) ) = ( 𝐵 / 𝐶 ) ) |
26 |
23 25
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) + ( 𝐴 / 𝐶 ) ) = ( 𝐵 / 𝐶 ) ) |
27 |
26
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) + ( 𝐴 / 𝐶 ) ) ∈ ℕ ↔ ( 𝐵 / 𝐶 ) ∈ ℕ ) ) |
28 |
27
|
biimpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) + ( 𝐴 / 𝐶 ) ) ∈ ℕ → ( 𝐵 / 𝐶 ) ∈ ℕ ) ) |
29 |
15 28
|
sylan9r |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( 𝐴 / 𝐶 ) ∈ ℕ ) → ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ → ( 𝐵 / 𝐶 ) ∈ ℕ ) ) |
30 |
29
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 / 𝐶 ) ∈ ℕ ∧ 𝐴 < 𝐵 ) ) → ( ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ → ( 𝐵 / 𝐶 ) ∈ ℕ ) ) |
31 |
13 30
|
impbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 / 𝐶 ) ∈ ℕ ∧ 𝐴 < 𝐵 ) ) → ( ( 𝐵 / 𝐶 ) ∈ ℕ ↔ ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ ) ) |
32 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
33 |
32
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
34 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
36 |
|
nncn |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℂ ) |
37 |
36 17
|
jca |
⊢ ( 𝐶 ∈ ℕ → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) |
38 |
37
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) |
39 |
|
divsubdir |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐵 − 𝐴 ) / 𝐶 ) = ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ) |
40 |
33 35 38 39
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 − 𝐴 ) / 𝐶 ) = ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ) |
41 |
40
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐵 − 𝐴 ) / 𝐶 ) ∈ ℕ ↔ ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ ) ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 / 𝐶 ) ∈ ℕ ∧ 𝐴 < 𝐵 ) ) → ( ( ( 𝐵 − 𝐴 ) / 𝐶 ) ∈ ℕ ↔ ( ( 𝐵 / 𝐶 ) − ( 𝐴 / 𝐶 ) ) ∈ ℕ ) ) |
43 |
31 42
|
bitr4d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 / 𝐶 ) ∈ ℕ ∧ 𝐴 < 𝐵 ) ) → ( ( 𝐵 / 𝐶 ) ∈ ℕ ↔ ( ( 𝐵 − 𝐴 ) / 𝐶 ) ∈ ℕ ) ) |