| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | nnre | ⊢ ( 𝐶  ∈  ℕ  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | nngt0 | ⊢ ( 𝐶  ∈  ℕ  →  0  <  𝐶 ) | 
						
							| 5 | 3 4 | jca | ⊢ ( 𝐶  ∈  ℕ  →  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 ) ) | 
						
							| 6 |  | ltdiv1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐶  ∈  ℝ  ∧  0  <  𝐶 ) )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  /  𝐶 )  <  ( 𝐵  /  𝐶 ) ) ) | 
						
							| 7 | 1 2 5 6 | syl3an | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  /  𝐶 )  <  ( 𝐵  /  𝐶 ) ) ) | 
						
							| 8 |  | nnsub | ⊢ ( ( ( 𝐴  /  𝐶 )  ∈  ℕ  ∧  ( 𝐵  /  𝐶 )  ∈  ℕ )  →  ( ( 𝐴  /  𝐶 )  <  ( 𝐵  /  𝐶 )  ↔  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) ) | 
						
							| 9 | 7 8 | sylan9bb | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴  /  𝐶 )  ∈  ℕ  ∧  ( 𝐵  /  𝐶 )  ∈  ℕ ) )  →  ( 𝐴  <  𝐵  ↔  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴  /  𝐶 )  ∈  ℕ  ∧  ( 𝐵  /  𝐶 )  ∈  ℕ ) )  →  ( 𝐴  <  𝐵  →  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) ) | 
						
							| 11 | 10 | exp32 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐴  /  𝐶 )  ∈  ℕ  →  ( ( 𝐵  /  𝐶 )  ∈  ℕ  →  ( 𝐴  <  𝐵  →  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) ) ) ) | 
						
							| 12 | 11 | com34 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐴  /  𝐶 )  ∈  ℕ  →  ( 𝐴  <  𝐵  →  ( ( 𝐵  /  𝐶 )  ∈  ℕ  →  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) ) ) ) | 
						
							| 13 | 12 | imp32 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴  /  𝐶 )  ∈  ℕ  ∧  𝐴  <  𝐵 ) )  →  ( ( 𝐵  /  𝐶 )  ∈  ℕ  →  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) ) | 
						
							| 14 |  | nnaddcl | ⊢ ( ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ  ∧  ( 𝐴  /  𝐶 )  ∈  ℕ )  →  ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  +  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) | 
						
							| 15 | 14 | expcom | ⊢ ( ( 𝐴  /  𝐶 )  ∈  ℕ  →  ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ  →  ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  +  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) ) | 
						
							| 16 |  | nnsscn | ⊢ ℕ  ⊆  ℂ | 
						
							| 17 |  | nnne0 | ⊢ ( 𝐶  ∈  ℕ  →  𝐶  ≠  0 ) | 
						
							| 18 |  | divcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  𝐶  ≠  0 )  →  ( 𝐴  /  𝐶 )  ∈  ℂ ) | 
						
							| 19 | 16 17 18 | nnssi2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐴  /  𝐶 )  ∈  ℂ ) | 
						
							| 20 |  | divcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  𝐶  ≠  0 )  →  ( 𝐵  /  𝐶 )  ∈  ℂ ) | 
						
							| 21 | 16 17 20 | nnssi2 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐵  /  𝐶 )  ∈  ℂ ) | 
						
							| 22 | 19 21 | anim12i | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( 𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ ) )  →  ( ( 𝐴  /  𝐶 )  ∈  ℂ  ∧  ( 𝐵  /  𝐶 )  ∈  ℂ ) ) | 
						
							| 23 | 22 | 3impdir | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐴  /  𝐶 )  ∈  ℂ  ∧  ( 𝐵  /  𝐶 )  ∈  ℂ ) ) | 
						
							| 24 |  | npcan | ⊢ ( ( ( 𝐵  /  𝐶 )  ∈  ℂ  ∧  ( 𝐴  /  𝐶 )  ∈  ℂ )  →  ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  +  ( 𝐴  /  𝐶 ) )  =  ( 𝐵  /  𝐶 ) ) | 
						
							| 25 | 24 | ancoms | ⊢ ( ( ( 𝐴  /  𝐶 )  ∈  ℂ  ∧  ( 𝐵  /  𝐶 )  ∈  ℂ )  →  ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  +  ( 𝐴  /  𝐶 ) )  =  ( 𝐵  /  𝐶 ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  +  ( 𝐴  /  𝐶 ) )  =  ( 𝐵  /  𝐶 ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  +  ( 𝐴  /  𝐶 ) )  ∈  ℕ  ↔  ( 𝐵  /  𝐶 )  ∈  ℕ ) ) | 
						
							| 28 | 27 | biimpd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  +  ( 𝐴  /  𝐶 ) )  ∈  ℕ  →  ( 𝐵  /  𝐶 )  ∈  ℕ ) ) | 
						
							| 29 | 15 28 | sylan9r | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( 𝐴  /  𝐶 )  ∈  ℕ )  →  ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ  →  ( 𝐵  /  𝐶 )  ∈  ℕ ) ) | 
						
							| 30 | 29 | adantrr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴  /  𝐶 )  ∈  ℕ  ∧  𝐴  <  𝐵 ) )  →  ( ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ  →  ( 𝐵  /  𝐶 )  ∈  ℕ ) ) | 
						
							| 31 | 13 30 | impbid | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴  /  𝐶 )  ∈  ℕ  ∧  𝐴  <  𝐵 ) )  →  ( ( 𝐵  /  𝐶 )  ∈  ℕ  ↔  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) ) | 
						
							| 32 |  | nncn | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ ) | 
						
							| 33 | 32 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 34 |  | nncn | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℂ ) | 
						
							| 35 | 34 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 36 |  | nncn | ⊢ ( 𝐶  ∈  ℕ  →  𝐶  ∈  ℂ ) | 
						
							| 37 | 36 17 | jca | ⊢ ( 𝐶  ∈  ℕ  →  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) ) | 
						
							| 38 | 37 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) ) | 
						
							| 39 |  | divsubdir | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( ( 𝐵  −  𝐴 )  /  𝐶 )  =  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) ) ) | 
						
							| 40 | 33 35 38 39 | syl3anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐵  −  𝐴 )  /  𝐶 )  =  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) ) ) | 
						
							| 41 | 40 | eleq1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( ( 𝐵  −  𝐴 )  /  𝐶 )  ∈  ℕ  ↔  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴  /  𝐶 )  ∈  ℕ  ∧  𝐴  <  𝐵 ) )  →  ( ( ( 𝐵  −  𝐴 )  /  𝐶 )  ∈  ℕ  ↔  ( ( 𝐵  /  𝐶 )  −  ( 𝐴  /  𝐶 ) )  ∈  ℕ ) ) | 
						
							| 43 | 31 42 | bitr4d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴  /  𝐶 )  ∈  ℕ  ∧  𝐴  <  𝐵 ) )  →  ( ( 𝐵  /  𝐶 )  ∈  ℕ  ↔  ( ( 𝐵  −  𝐴 )  /  𝐶 )  ∈  ℕ ) ) |