| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 2 |  | nngt0 | ⊢ ( 𝐵  ∈  ℕ  →  0  <  𝐵 ) | 
						
							| 3 | 1 2 | jca | ⊢ ( 𝐵  ∈  ℕ  →  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) ) | 
						
							| 4 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | nngt0 | ⊢ ( 𝐴  ∈  ℕ  →  0  <  𝐴 ) | 
						
							| 6 | 4 5 | jca | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 7 |  | nnge1 | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℕ  →  1  ≤  ( 𝐴  /  𝐵 ) ) | 
						
							| 8 |  | lediv2 | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 )  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 𝐵  ≤  𝐴  ↔  ( 𝐴  /  𝐴 )  ≤  ( 𝐴  /  𝐵 ) ) ) | 
						
							| 9 | 8 | 3anidm23 | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 )  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 𝐵  ≤  𝐴  ↔  ( 𝐴  /  𝐴 )  ≤  ( 𝐴  /  𝐵 ) ) ) | 
						
							| 10 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ∈  ℂ ) | 
						
							| 12 |  | gt0ne0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 13 |  | divid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( 𝐴  /  𝐴 )  =  1 ) | 
						
							| 14 | 13 | breq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( 𝐴  /  𝐴 )  ≤  ( 𝐴  /  𝐵 )  ↔  1  ≤  ( 𝐴  /  𝐵 ) ) ) | 
						
							| 15 | 11 12 14 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( ( 𝐴  /  𝐴 )  ≤  ( 𝐴  /  𝐵 )  ↔  1  ≤  ( 𝐴  /  𝐵 ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 )  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( 𝐴  /  𝐴 )  ≤  ( 𝐴  /  𝐵 )  ↔  1  ≤  ( 𝐴  /  𝐵 ) ) ) | 
						
							| 17 | 9 16 | bitrd | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 )  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 𝐵  ≤  𝐴  ↔  1  ≤  ( 𝐴  /  𝐵 ) ) ) | 
						
							| 18 | 7 17 | imbitrrid | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 )  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( 𝐴  /  𝐵 )  ∈  ℕ  →  𝐵  ≤  𝐴 ) ) | 
						
							| 19 | 3 6 18 | syl2anr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  /  𝐵 )  ∈  ℕ  →  𝐵  ≤  𝐴 ) ) |