Metamath Proof Explorer


Theorem nndivlub

Description: A factor of a positive integer cannot exceed it. (Contributed by Jeff Hoffman, 17-Jun-2008)

Ref Expression
Assertion nndivlub ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) ∈ ℕ → 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 nnre ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ )
2 nngt0 ( 𝐵 ∈ ℕ → 0 < 𝐵 )
3 1 2 jca ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) )
4 nnre ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ )
5 nngt0 ( 𝐴 ∈ ℕ → 0 < 𝐴 )
6 4 5 jca ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
7 nnge1 ( ( 𝐴 / 𝐵 ) ∈ ℕ → 1 ≤ ( 𝐴 / 𝐵 ) )
8 lediv2 ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐵𝐴 ↔ ( 𝐴 / 𝐴 ) ≤ ( 𝐴 / 𝐵 ) ) )
9 8 3anidm23 ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐵𝐴 ↔ ( 𝐴 / 𝐴 ) ≤ ( 𝐴 / 𝐵 ) ) )
10 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
11 10 adantr ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ )
12 gt0ne0 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )
13 divid ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = 1 )
14 13 breq1d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 / 𝐴 ) ≤ ( 𝐴 / 𝐵 ) ↔ 1 ≤ ( 𝐴 / 𝐵 ) ) )
15 11 12 14 syl2anc ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 𝐴 / 𝐴 ) ≤ ( 𝐴 / 𝐵 ) ↔ 1 ≤ ( 𝐴 / 𝐵 ) ) )
16 15 adantl ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐴 / 𝐴 ) ≤ ( 𝐴 / 𝐵 ) ↔ 1 ≤ ( 𝐴 / 𝐵 ) ) )
17 9 16 bitrd ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐵𝐴 ↔ 1 ≤ ( 𝐴 / 𝐵 ) ) )
18 7 17 syl5ibr ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐴 / 𝐵 ) ∈ ℕ → 𝐵𝐴 ) )
19 3 6 18 syl2anr ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) ∈ ℕ → 𝐵𝐴 ) )