Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
2 |
|
nngt0 |
⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) |
3 |
1 2
|
jca |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
4 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
5 |
|
nngt0 |
⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) |
6 |
4 5
|
jca |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
7 |
|
nnge1 |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℕ → 1 ≤ ( 𝐴 / 𝐵 ) ) |
8 |
|
lediv2 |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐴 / 𝐴 ) ≤ ( 𝐴 / 𝐵 ) ) ) |
9 |
8
|
3anidm23 |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐴 / 𝐴 ) ≤ ( 𝐴 / 𝐵 ) ) ) |
10 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
12 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
13 |
|
divid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = 1 ) |
14 |
13
|
breq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 / 𝐴 ) ≤ ( 𝐴 / 𝐵 ) ↔ 1 ≤ ( 𝐴 / 𝐵 ) ) ) |
15 |
11 12 14
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 𝐴 / 𝐴 ) ≤ ( 𝐴 / 𝐵 ) ↔ 1 ≤ ( 𝐴 / 𝐵 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐴 / 𝐴 ) ≤ ( 𝐴 / 𝐵 ) ↔ 1 ≤ ( 𝐴 / 𝐵 ) ) ) |
17 |
9 16
|
bitrd |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐵 ≤ 𝐴 ↔ 1 ≤ ( 𝐴 / 𝐵 ) ) ) |
18 |
7 17
|
syl5ibr |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 𝐴 / 𝐵 ) ∈ ℕ → 𝐵 ≤ 𝐴 ) ) |
19 |
3 6 18
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) ∈ ℕ → 𝐵 ≤ 𝐴 ) ) |