| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 2 |  | nngt0 |  |-  ( B e. NN -> 0 < B ) | 
						
							| 3 | 1 2 | jca |  |-  ( B e. NN -> ( B e. RR /\ 0 < B ) ) | 
						
							| 4 |  | nnre |  |-  ( A e. NN -> A e. RR ) | 
						
							| 5 |  | nngt0 |  |-  ( A e. NN -> 0 < A ) | 
						
							| 6 | 4 5 | jca |  |-  ( A e. NN -> ( A e. RR /\ 0 < A ) ) | 
						
							| 7 |  | nnge1 |  |-  ( ( A / B ) e. NN -> 1 <_ ( A / B ) ) | 
						
							| 8 |  | lediv2 |  |-  ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) /\ ( A e. RR /\ 0 < A ) ) -> ( B <_ A <-> ( A / A ) <_ ( A / B ) ) ) | 
						
							| 9 | 8 | 3anidm23 |  |-  ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( B <_ A <-> ( A / A ) <_ ( A / B ) ) ) | 
						
							| 10 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 11 | 10 | adantr |  |-  ( ( A e. RR /\ 0 < A ) -> A e. CC ) | 
						
							| 12 |  | gt0ne0 |  |-  ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) | 
						
							| 13 |  | divid |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( A / A ) = 1 ) | 
						
							| 14 | 13 | breq1d |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( A / A ) <_ ( A / B ) <-> 1 <_ ( A / B ) ) ) | 
						
							| 15 | 11 12 14 | syl2anc |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( A / A ) <_ ( A / B ) <-> 1 <_ ( A / B ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( ( A / A ) <_ ( A / B ) <-> 1 <_ ( A / B ) ) ) | 
						
							| 17 | 9 16 | bitrd |  |-  ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( B <_ A <-> 1 <_ ( A / B ) ) ) | 
						
							| 18 | 7 17 | imbitrrid |  |-  ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( ( A / B ) e. NN -> B <_ A ) ) | 
						
							| 19 | 3 6 18 | syl2anr |  |-  ( ( A e. NN /\ B e. NN ) -> ( ( A / B ) e. NN -> B <_ A ) ) |