Metamath Proof Explorer


Theorem norec2fn

Description: The double-recursion operator on surreals yields a function on pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Hypothesis norec2.1 No typesetting found for |- F = norec2 ( G ) with typecode |-
Assertion norec2fn F Fn No × No

Proof

Step Hyp Ref Expression
1 norec2.1 Could not format F = norec2 ( G ) : No typesetting found for |- F = norec2 ( G ) with typecode |-
2 eqid c d | c L d R d = c d | c L d R d
3 eqid a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b = a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b
4 2 3 noxpordfr a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Fr No × No
5 2 3 noxpordpo a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Po No × No
6 2 3 noxpordse a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Se No × No
7 df-norec2 Could not format norec2 ( G ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , G ) : No typesetting found for |- norec2 ( G ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , G ) with typecode |-
8 1 7 eqtri F = frecs a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No G
9 8 fpr1 a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Fr No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Po No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Se No × No F Fn No × No
10 4 5 6 9 mp3an F Fn No × No