Metamath Proof Explorer


Theorem norec2ov

Description: The value of the double-recursion surreal function. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Hypothesis norec2.1 No typesetting found for |- F = norec2 ( G ) with typecode |-
Assertion norec2ov A No B No A F B = A B G F L A R A A × L B R B B A B

Proof

Step Hyp Ref Expression
1 norec2.1 Could not format F = norec2 ( G ) : No typesetting found for |- F = norec2 ( G ) with typecode |-
2 df-ov A F B = F A B
3 opelxp A B No × No A No B No
4 eqid c d | c L d R d = c d | c L d R d
5 eqid a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b = a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b
6 4 5 noxpordfr a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Fr No × No
7 4 5 noxpordpo a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Po No × No
8 4 5 noxpordse a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Se No × No
9 6 7 8 3pm3.2i a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Fr No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Po No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Se No × No
10 df-norec2 Could not format norec2 ( G ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , G ) : No typesetting found for |- norec2 ( G ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _L ` d ) u. ( _R ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , G ) with typecode |-
11 1 10 eqtri F = frecs a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No G
12 11 fpr2 a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Fr No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Po No × No a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b Se No × No A B No × No F A B = A B G F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B
13 9 12 mpan A B No × No F A B = A B G F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B
14 3 13 sylbir A No B No F A B = A B G F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B
15 2 14 syl5eq A No B No A F B = A B G F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B
16 4 5 noxpordpred A No B No Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B = L A R A A × L B R B B A B
17 16 reseq2d A No B No F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B = F L A R A A × L B R B B A B
18 17 oveq2d A No B No A B G F Pred a b | a No × No b No × No 1 st a c d | c L d R d 1 st b 1 st a = 1 st b 2 nd a c d | c L d R d 2 nd b 2 nd a = 2 nd b a b No × No A B = A B G F L A R A A × L B R B B A B
19 15 18 eqtrd A No B No A F B = A B G F L A R A A × L B R B B A B