Metamath Proof Explorer


Theorem norm3lem

Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses norm3dif.1 A
norm3dif.2 B
norm3dif.3 C
norm3lem.4 D
Assertion norm3lem norm A - C < D 2 norm C - B < D 2 norm A - B < D

Proof

Step Hyp Ref Expression
1 norm3dif.1 A
2 norm3dif.2 B
3 norm3dif.3 C
4 norm3lem.4 D
5 1 2 3 norm3difi norm A - B norm A - C + norm C - B
6 1 3 hvsubcli A - C
7 6 normcli norm A - C
8 3 2 hvsubcli C - B
9 8 normcli norm C - B
10 4 rehalfcli D 2
11 7 9 10 10 lt2addi norm A - C < D 2 norm C - B < D 2 norm A - C + norm C - B < D 2 + D 2
12 1 2 hvsubcli A - B
13 12 normcli norm A - B
14 7 9 readdcli norm A - C + norm C - B
15 10 10 readdcli D 2 + D 2
16 13 14 15 lelttri norm A - B norm A - C + norm C - B norm A - C + norm C - B < D 2 + D 2 norm A - B < D 2 + D 2
17 5 11 16 sylancr norm A - C < D 2 norm C - B < D 2 norm A - B < D 2 + D 2
18 10 recni D 2
19 18 2timesi 2 D 2 = D 2 + D 2
20 4 recni D
21 2cn 2
22 2ne0 2 0
23 20 21 22 divcan2i 2 D 2 = D
24 19 23 eqtr3i D 2 + D 2 = D
25 17 24 breqtrdi norm A - C < D 2 norm C - B < D 2 norm A - B < D