Metamath Proof Explorer


Theorem norm3lem

Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses norm3dif.1
|- A e. ~H
norm3dif.2
|- B e. ~H
norm3dif.3
|- C e. ~H
norm3lem.4
|- D e. RR
Assertion norm3lem
|- ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D )

Proof

Step Hyp Ref Expression
1 norm3dif.1
 |-  A e. ~H
2 norm3dif.2
 |-  B e. ~H
3 norm3dif.3
 |-  C e. ~H
4 norm3lem.4
 |-  D e. RR
5 1 2 3 norm3difi
 |-  ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) )
6 1 3 hvsubcli
 |-  ( A -h C ) e. ~H
7 6 normcli
 |-  ( normh ` ( A -h C ) ) e. RR
8 3 2 hvsubcli
 |-  ( C -h B ) e. ~H
9 8 normcli
 |-  ( normh ` ( C -h B ) ) e. RR
10 4 rehalfcli
 |-  ( D / 2 ) e. RR
11 7 9 10 10 lt2addi
 |-  ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) < ( ( D / 2 ) + ( D / 2 ) ) )
12 1 2 hvsubcli
 |-  ( A -h B ) e. ~H
13 12 normcli
 |-  ( normh ` ( A -h B ) ) e. RR
14 7 9 readdcli
 |-  ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) e. RR
15 10 10 readdcli
 |-  ( ( D / 2 ) + ( D / 2 ) ) e. RR
16 13 14 15 lelttri
 |-  ( ( ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) /\ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) < ( ( D / 2 ) + ( D / 2 ) ) ) -> ( normh ` ( A -h B ) ) < ( ( D / 2 ) + ( D / 2 ) ) )
17 5 11 16 sylancr
 |-  ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < ( ( D / 2 ) + ( D / 2 ) ) )
18 10 recni
 |-  ( D / 2 ) e. CC
19 18 2timesi
 |-  ( 2 x. ( D / 2 ) ) = ( ( D / 2 ) + ( D / 2 ) )
20 4 recni
 |-  D e. CC
21 2cn
 |-  2 e. CC
22 2ne0
 |-  2 =/= 0
23 20 21 22 divcan2i
 |-  ( 2 x. ( D / 2 ) ) = D
24 19 23 eqtr3i
 |-  ( ( D / 2 ) + ( D / 2 ) ) = D
25 17 24 breqtrdi
 |-  ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D )