| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvoveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) |
| 2 |
|
fvoveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) ) |
| 3 |
2
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h B ) ) ) ) |
| 4 |
1 3
|
breq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h B ) ) ) ) ) |
| 5 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
| 6 |
5
|
fveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 7 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( C -h B ) = ( C -h if ( B e. ~H , B , 0h ) ) ) |
| 8 |
7
|
fveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( C -h B ) ) = ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) |
| 9 |
8
|
oveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h B ) ) ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) ) |
| 10 |
6 9
|
breq12d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h B ) ) ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) ) ) |
| 11 |
|
oveq2 |
|- ( C = if ( C e. ~H , C , 0h ) -> ( if ( A e. ~H , A , 0h ) -h C ) = ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) |
| 12 |
11
|
fveq2d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) ) |
| 13 |
|
fvoveq1 |
|- ( C = if ( C e. ~H , C , 0h ) -> ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) = ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 14 |
12 13
|
oveq12d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) + ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) ) |
| 15 |
14
|
breq2d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) + ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) + ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) ) ) |
| 16 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
| 17 |
|
ifhvhv0 |
|- if ( B e. ~H , B , 0h ) e. ~H |
| 18 |
|
ifhvhv0 |
|- if ( C e. ~H , C , 0h ) e. ~H |
| 19 |
16 17 18
|
norm3difi |
|- ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) <_ ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) + ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 20 |
4 10 15 19
|
dedth3h |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) ) |