| Step |
Hyp |
Ref |
Expression |
| 1 |
|
norm3dif.1 |
|- A e. ~H |
| 2 |
|
norm3dif.2 |
|- B e. ~H |
| 3 |
|
norm3dif.3 |
|- C e. ~H |
| 4 |
1 2
|
hvsubvali |
|- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 5 |
1 3
|
hvsubvali |
|- ( A -h C ) = ( A +h ( -u 1 .h C ) ) |
| 6 |
3 2
|
hvsubvali |
|- ( C -h B ) = ( C +h ( -u 1 .h B ) ) |
| 7 |
5 6
|
oveq12i |
|- ( ( A -h C ) +h ( C -h B ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( C +h ( -u 1 .h B ) ) ) |
| 8 |
|
neg1cn |
|- -u 1 e. CC |
| 9 |
8 3
|
hvmulcli |
|- ( -u 1 .h C ) e. ~H |
| 10 |
8 2
|
hvmulcli |
|- ( -u 1 .h B ) e. ~H |
| 11 |
3 10
|
hvaddcli |
|- ( C +h ( -u 1 .h B ) ) e. ~H |
| 12 |
1 9 11
|
hvassi |
|- ( ( A +h ( -u 1 .h C ) ) +h ( C +h ( -u 1 .h B ) ) ) = ( A +h ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) ) |
| 13 |
9 3 10
|
hvassi |
|- ( ( ( -u 1 .h C ) +h C ) +h ( -u 1 .h B ) ) = ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) |
| 14 |
9 3
|
hvcomi |
|- ( ( -u 1 .h C ) +h C ) = ( C +h ( -u 1 .h C ) ) |
| 15 |
3 3
|
hvsubvali |
|- ( C -h C ) = ( C +h ( -u 1 .h C ) ) |
| 16 |
|
hvsubid |
|- ( C e. ~H -> ( C -h C ) = 0h ) |
| 17 |
3 16
|
ax-mp |
|- ( C -h C ) = 0h |
| 18 |
14 15 17
|
3eqtr2i |
|- ( ( -u 1 .h C ) +h C ) = 0h |
| 19 |
18
|
oveq1i |
|- ( ( ( -u 1 .h C ) +h C ) +h ( -u 1 .h B ) ) = ( 0h +h ( -u 1 .h B ) ) |
| 20 |
|
ax-hv0cl |
|- 0h e. ~H |
| 21 |
20 10
|
hvcomi |
|- ( 0h +h ( -u 1 .h B ) ) = ( ( -u 1 .h B ) +h 0h ) |
| 22 |
|
ax-hvaddid |
|- ( ( -u 1 .h B ) e. ~H -> ( ( -u 1 .h B ) +h 0h ) = ( -u 1 .h B ) ) |
| 23 |
10 22
|
ax-mp |
|- ( ( -u 1 .h B ) +h 0h ) = ( -u 1 .h B ) |
| 24 |
19 21 23
|
3eqtri |
|- ( ( ( -u 1 .h C ) +h C ) +h ( -u 1 .h B ) ) = ( -u 1 .h B ) |
| 25 |
13 24
|
eqtr3i |
|- ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) = ( -u 1 .h B ) |
| 26 |
25
|
oveq2i |
|- ( A +h ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) ) = ( A +h ( -u 1 .h B ) ) |
| 27 |
7 12 26
|
3eqtri |
|- ( ( A -h C ) +h ( C -h B ) ) = ( A +h ( -u 1 .h B ) ) |
| 28 |
4 27
|
eqtr4i |
|- ( A -h B ) = ( ( A -h C ) +h ( C -h B ) ) |
| 29 |
28
|
fveq2i |
|- ( normh ` ( A -h B ) ) = ( normh ` ( ( A -h C ) +h ( C -h B ) ) ) |
| 30 |
1 3
|
hvsubcli |
|- ( A -h C ) e. ~H |
| 31 |
3 2
|
hvsubcli |
|- ( C -h B ) e. ~H |
| 32 |
30 31
|
norm-ii-i |
|- ( normh ` ( ( A -h C ) +h ( C -h B ) ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) |
| 33 |
29 32
|
eqbrtri |
|- ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) |