Step |
Hyp |
Ref |
Expression |
1 |
|
norm3dif.1 |
|- A e. ~H |
2 |
|
norm3dif.2 |
|- B e. ~H |
3 |
|
norm3dif.3 |
|- C e. ~H |
4 |
1 3
|
hvsubcli |
|- ( A -h C ) e. ~H |
5 |
4
|
normcli |
|- ( normh ` ( A -h C ) ) e. RR |
6 |
5
|
recni |
|- ( normh ` ( A -h C ) ) e. CC |
7 |
2 3
|
hvsubcli |
|- ( B -h C ) e. ~H |
8 |
7
|
normcli |
|- ( normh ` ( B -h C ) ) e. RR |
9 |
8
|
recni |
|- ( normh ` ( B -h C ) ) e. CC |
10 |
6 9
|
negsubdi2i |
|- -u ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) = ( ( normh ` ( B -h C ) ) - ( normh ` ( A -h C ) ) ) |
11 |
2 3 1
|
norm3difi |
|- ( normh ` ( B -h C ) ) <_ ( ( normh ` ( B -h A ) ) + ( normh ` ( A -h C ) ) ) |
12 |
2 1
|
normsubi |
|- ( normh ` ( B -h A ) ) = ( normh ` ( A -h B ) ) |
13 |
12
|
oveq1i |
|- ( ( normh ` ( B -h A ) ) + ( normh ` ( A -h C ) ) ) = ( ( normh ` ( A -h B ) ) + ( normh ` ( A -h C ) ) ) |
14 |
11 13
|
breqtri |
|- ( normh ` ( B -h C ) ) <_ ( ( normh ` ( A -h B ) ) + ( normh ` ( A -h C ) ) ) |
15 |
1 2
|
hvsubcli |
|- ( A -h B ) e. ~H |
16 |
15
|
normcli |
|- ( normh ` ( A -h B ) ) e. RR |
17 |
8 5 16
|
lesubaddi |
|- ( ( ( normh ` ( B -h C ) ) - ( normh ` ( A -h C ) ) ) <_ ( normh ` ( A -h B ) ) <-> ( normh ` ( B -h C ) ) <_ ( ( normh ` ( A -h B ) ) + ( normh ` ( A -h C ) ) ) ) |
18 |
14 17
|
mpbir |
|- ( ( normh ` ( B -h C ) ) - ( normh ` ( A -h C ) ) ) <_ ( normh ` ( A -h B ) ) |
19 |
10 18
|
eqbrtri |
|- -u ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) <_ ( normh ` ( A -h B ) ) |
20 |
5 8
|
resubcli |
|- ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) e. RR |
21 |
20 16
|
lenegcon1i |
|- ( -u ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) <_ ( normh ` ( A -h B ) ) <-> -u ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) |
22 |
19 21
|
mpbi |
|- -u ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) |
23 |
1 3 2
|
norm3difi |
|- ( normh ` ( A -h C ) ) <_ ( ( normh ` ( A -h B ) ) + ( normh ` ( B -h C ) ) ) |
24 |
5 8 16
|
lesubaddi |
|- ( ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) <_ ( normh ` ( A -h B ) ) <-> ( normh ` ( A -h C ) ) <_ ( ( normh ` ( A -h B ) ) + ( normh ` ( B -h C ) ) ) ) |
25 |
23 24
|
mpbir |
|- ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) <_ ( normh ` ( A -h B ) ) |
26 |
20 16
|
abslei |
|- ( ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) <-> ( -u ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) /\ ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) <_ ( normh ` ( A -h B ) ) ) ) |
27 |
22 25 26
|
mpbir2an |
|- ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) |