Metamath Proof Explorer


Theorem norm3adifii

Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 30-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses norm3dif.1 A
norm3dif.2 B
norm3dif.3 C
Assertion norm3adifii norm A - C norm B - C norm A - B

Proof

Step Hyp Ref Expression
1 norm3dif.1 A
2 norm3dif.2 B
3 norm3dif.3 C
4 1 3 hvsubcli A - C
5 4 normcli norm A - C
6 5 recni norm A - C
7 2 3 hvsubcli B - C
8 7 normcli norm B - C
9 8 recni norm B - C
10 6 9 negsubdi2i norm A - C norm B - C = norm B - C norm A - C
11 2 3 1 norm3difi norm B - C norm B - A + norm A - C
12 2 1 normsubi norm B - A = norm A - B
13 12 oveq1i norm B - A + norm A - C = norm A - B + norm A - C
14 11 13 breqtri norm B - C norm A - B + norm A - C
15 1 2 hvsubcli A - B
16 15 normcli norm A - B
17 8 5 16 lesubaddi norm B - C norm A - C norm A - B norm B - C norm A - B + norm A - C
18 14 17 mpbir norm B - C norm A - C norm A - B
19 10 18 eqbrtri norm A - C norm B - C norm A - B
20 5 8 resubcli norm A - C norm B - C
21 20 16 lenegcon1i norm A - C norm B - C norm A - B norm A - B norm A - C norm B - C
22 19 21 mpbi norm A - B norm A - C norm B - C
23 1 3 2 norm3difi norm A - C norm A - B + norm B - C
24 5 8 16 lesubaddi norm A - C norm B - C norm A - B norm A - C norm A - B + norm B - C
25 23 24 mpbir norm A - C norm B - C norm A - B
26 20 16 abslei norm A - C norm B - C norm A - B norm A - B norm A - C norm B - C norm A - C norm B - C norm A - B
27 22 25 26 mpbir2an norm A - C norm B - C norm A - B