| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normsub.1 |
|- A e. ~H |
| 2 |
|
normsub.2 |
|- B e. ~H |
| 3 |
|
neg1cn |
|- -u 1 e. CC |
| 4 |
2 1
|
hvsubcli |
|- ( B -h A ) e. ~H |
| 5 |
3 4
|
norm-iii-i |
|- ( normh ` ( -u 1 .h ( B -h A ) ) ) = ( ( abs ` -u 1 ) x. ( normh ` ( B -h A ) ) ) |
| 6 |
2 1
|
hvnegdii |
|- ( -u 1 .h ( B -h A ) ) = ( A -h B ) |
| 7 |
6
|
fveq2i |
|- ( normh ` ( -u 1 .h ( B -h A ) ) ) = ( normh ` ( A -h B ) ) |
| 8 |
|
ax-1cn |
|- 1 e. CC |
| 9 |
8
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 10 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 11 |
9 10
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
| 12 |
11
|
oveq1i |
|- ( ( abs ` -u 1 ) x. ( normh ` ( B -h A ) ) ) = ( 1 x. ( normh ` ( B -h A ) ) ) |
| 13 |
4
|
normcli |
|- ( normh ` ( B -h A ) ) e. RR |
| 14 |
13
|
recni |
|- ( normh ` ( B -h A ) ) e. CC |
| 15 |
14
|
mullidi |
|- ( 1 x. ( normh ` ( B -h A ) ) ) = ( normh ` ( B -h A ) ) |
| 16 |
12 15
|
eqtri |
|- ( ( abs ` -u 1 ) x. ( normh ` ( B -h A ) ) ) = ( normh ` ( B -h A ) ) |
| 17 |
5 7 16
|
3eqtr3i |
|- ( normh ` ( A -h B ) ) = ( normh ` ( B -h A ) ) |