| Step |
Hyp |
Ref |
Expression |
| 1 |
|
norm-iii.1 |
|- A e. CC |
| 2 |
|
norm-iii.2 |
|- B e. ~H |
| 3 |
1 1 2 2
|
his35i |
|- ( ( A .h B ) .ih ( A .h B ) ) = ( ( A x. ( * ` A ) ) x. ( B .ih B ) ) |
| 4 |
3
|
fveq2i |
|- ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) = ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B .ih B ) ) ) |
| 5 |
1
|
cjmulrcli |
|- ( A x. ( * ` A ) ) e. RR |
| 6 |
|
hiidrcl |
|- ( B e. ~H -> ( B .ih B ) e. RR ) |
| 7 |
2 6
|
ax-mp |
|- ( B .ih B ) e. RR |
| 8 |
1
|
cjmulge0i |
|- 0 <_ ( A x. ( * ` A ) ) |
| 9 |
|
hiidge0 |
|- ( B e. ~H -> 0 <_ ( B .ih B ) ) |
| 10 |
2 9
|
ax-mp |
|- 0 <_ ( B .ih B ) |
| 11 |
5 7 8 10
|
sqrtmulii |
|- ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B .ih B ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B .ih B ) ) ) |
| 12 |
4 11
|
eqtri |
|- ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B .ih B ) ) ) |
| 13 |
1 2
|
hvmulcli |
|- ( A .h B ) e. ~H |
| 14 |
|
normval |
|- ( ( A .h B ) e. ~H -> ( normh ` ( A .h B ) ) = ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) ) |
| 15 |
13 14
|
ax-mp |
|- ( normh ` ( A .h B ) ) = ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) |
| 16 |
|
absval |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 17 |
1 16
|
ax-mp |
|- ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) |
| 18 |
|
normval |
|- ( B e. ~H -> ( normh ` B ) = ( sqrt ` ( B .ih B ) ) ) |
| 19 |
2 18
|
ax-mp |
|- ( normh ` B ) = ( sqrt ` ( B .ih B ) ) |
| 20 |
17 19
|
oveq12i |
|- ( ( abs ` A ) x. ( normh ` B ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B .ih B ) ) ) |
| 21 |
12 15 20
|
3eqtr4i |
|- ( normh ` ( A .h B ) ) = ( ( abs ` A ) x. ( normh ` B ) ) |