Metamath Proof Explorer


Theorem notrab

Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion notrab AxA|φ=xA|¬φ

Proof

Step Hyp Ref Expression
1 difab x|xAx|φ=x|xA¬φ
2 difin AAx|φ=Ax|φ
3 dfrab3 xA|φ=Ax|φ
4 3 difeq2i AxA|φ=AAx|φ
5 abid2 x|xA=A
6 5 difeq1i x|xAx|φ=Ax|φ
7 2 4 6 3eqtr4i AxA|φ=x|xAx|φ
8 df-rab xA|¬φ=x|xA¬φ
9 1 7 8 3eqtr4i AxA|φ=xA|¬φ