Metamath Proof Explorer


Theorem dfrab3ss

Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by Mario Carneiro, 8-Nov-2015)

Ref Expression
Assertion dfrab3ss ABxA|φ=AxB|φ

Proof

Step Hyp Ref Expression
1 df-ss ABAB=A
2 ineq1 AB=AABx|φ=Ax|φ
3 2 eqcomd AB=AAx|φ=ABx|φ
4 1 3 sylbi ABAx|φ=ABx|φ
5 dfrab3 xA|φ=Ax|φ
6 dfrab3 xB|φ=Bx|φ
7 6 ineq2i AxB|φ=ABx|φ
8 inass ABx|φ=ABx|φ
9 7 8 eqtr4i AxB|φ=ABx|φ
10 4 5 9 3eqtr4g ABxA|φ=AxB|φ