Metamath Proof Explorer


Theorem noxpordpo

Description: To get through most of the textbook defintions in surreal numbers we will need recursion on two variables. This set of theorems sets up the preconditions for double recursion. This theorem establishes the partial ordering. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypotheses noxpord.1 No typesetting found for |- R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } with typecode |-
noxpord.2 S=xy|xNo×NoyNo×No1stxR1sty1stx=1sty2ndxR2ndy2ndx=2ndyxy
Assertion noxpordpo SPoNo×No

Proof

Step Hyp Ref Expression
1 noxpord.1 Could not format R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } : No typesetting found for |- R = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } with typecode |-
2 noxpord.2 S=xy|xNo×NoyNo×No1stxR1sty1stx=1sty2ndxR2ndy2ndx=2ndyxy
3 1 lrrecpo RPoNo
4 3 a1i RPoNo
5 2 4 4 poxp2 SPoNo×No
6 5 mptru SPoNo×No