Database SURREAL NUMBERS Induction and recursion Induction and recursion on two variables noxpordpo  
				
		 
		
			
		 
		Description:   To get through most of the textbook definitions in surreal numbers we
       will need recursion on two variables.  This set of theorems sets up the
       preconditions for double recursion.  This theorem establishes the
       partial ordering.  (Contributed by Scott Fenton , 19-Aug-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						noxpord.1   ⊢   R  =   a  b |   a  ∈    L  ⁡  b   ∪   R  ⁡  b             
					 
					
						noxpord.2   ⊢   S  =   x  y |    x  ∈   No  ×  No     ∧   y  ∈   No  ×  No     ∧     1  st ⁡  x   R   1  st ⁡  y  ∨    1  st ⁡  x   =   1  st ⁡  y      ∧    2  nd ⁡  x   R   2  nd ⁡  y  ∨    2  nd ⁡  x   =   2  nd ⁡  y      ∧   x  ≠  y             
					 
				
					Assertion 
					noxpordpo   ⊢   S  Po   No  ×  No        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							noxpord.1  ⊢   R  =   a  b |   a  ∈    L  ⁡  b   ∪   R  ⁡  b             
						
							2 
								
							 
							noxpord.2  ⊢   S  =   x  y |    x  ∈   No  ×  No     ∧   y  ∈   No  ×  No     ∧     1  st ⁡  x   R   1  st ⁡  y  ∨    1  st ⁡  x   =   1  st ⁡  y      ∧    2  nd ⁡  x   R   2  nd ⁡  y  ∨    2  nd ⁡  x   =   2  nd ⁡  y      ∧   x  ≠  y             
						
							3 
								1 
							 
							lrrecpo  ⊢   R  Po  No       
						
							4 
								3 
							 
							a1i   ⊢  ⊤  →   R  Po  No         
						
							5 
								2  4  4 
							 
							poxp2   ⊢  ⊤  →   S  Po   No  ×  No          
						
							6 
								5 
							 
							mptru  ⊢   S  Po   No  ×  No