Metamath Proof Explorer


Theorem nregmodelf1o

Description: Define a permutation F used to produce a model in which ax-reg is false. The permutation swaps (/) and { (/) } and leaves the rest of V fixed. This is an example given after Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 16-Nov-2025)

Ref Expression
Hypothesis nregmodel.1 F = I V
Assertion nregmodelf1o F : V 1-1 onto V

Proof

Step Hyp Ref Expression
1 nregmodel.1 F = I V
2 f1ovi I : V 1-1 onto V
3 0ex V
4 snex V
5 f1ofvswap I : V 1-1 onto V V V I V I I : V 1-1 onto V
6 2 3 4 5 mp3an I V I I : V 1-1 onto V
7 fvi V I =
8 4 7 ax-mp I =
9 8 opeq2i I =
10 fvi V I =
11 3 10 ax-mp I =
12 11 opeq2i I =
13 9 12 preq12i I I =
14 13 uneq2i I V I I = I V
15 1 14 eqtr4i F = I V I I
16 f1oeq1 F = I V I I F : V 1-1 onto V I V I I : V 1-1 onto V
17 15 16 ax-mp F : V 1-1 onto V I V I I : V 1-1 onto V
18 6 17 mpbir F : V 1-1 onto V