Metamath Proof Explorer


Theorem nrexralim

Description: Negation of a complex predicate calculus formula. (Contributed by FL, 31-Jul-2009)

Ref Expression
Assertion nrexralim ¬xAyBφψxAyBφ¬ψ

Proof

Step Hyp Ref Expression
1 rexanali yBφ¬ψ¬yBφψ
2 1 ralbii xAyBφ¬ψxA¬yBφψ
3 ralnex xA¬yBφψ¬xAyBφψ
4 2 3 bitr2i ¬xAyBφψxAyBφ¬ψ