Metamath Proof Explorer


Theorem nssss

Description: Negation of subclass relationship. Compare nss . (Contributed by NM, 30-Jun-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion nssss ¬ABxxA¬xB

Proof

Step Hyp Ref Expression
1 exanali xxA¬xB¬xxAxB
2 ssextss ABxxAxB
3 1 2 xchbinxr xxA¬xB¬AB
4 3 bicomi ¬ABxxA¬xB