Description: Negation of subclass relationship. Compare nss . (Contributed by NM, 30-Jun-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nssss | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exanali | ⊢ ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ¬ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) | |
| 2 | ssextss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) | |
| 3 | 1 2 | xchbinxr | ⊢ ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ¬ 𝐴 ⊆ 𝐵 ) |
| 4 | 3 | bicomi | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) |