Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Richard Penner Exploring Topology via Seifert and Threlfall Generic Pseudoclosure Spaces, Pseudointerior Spaces, and Pseudoneighborhoods ntrneif1o  
				
		 
		
			
		 
		Description:   If (pseudo-)interior and (pseudo-)neighborhood functions are related
         by the operator, F  , we may characterize the relation as part of a
         1-to-1 onto function.  (Contributed by RP , 29-May-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ntrnei.o   ⊢   O  =    i  ∈  V  ,  j  ∈  V  ⟼    k  ∈    𝒫  j    i   ⟼    l  ∈  j  ⟼   m  ∈  i  |   l  ∈   k  ⁡  m                     
					 
					
						ntrnei.f   ⊢   F  =   𝒫  B    O  B      
					 
					
						ntrnei.r    ⊢   φ   →  I  F  N      
					 
				
					Assertion 
					ntrneif1o    ⊢   φ   →   F  :    𝒫  B     𝒫  B      ⟶  1-1 onto   𝒫   𝒫  B      B           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ntrnei.o  ⊢   O  =    i  ∈  V  ,  j  ∈  V  ⟼    k  ∈    𝒫  j    i   ⟼    l  ∈  j  ⟼   m  ∈  i  |   l  ∈   k  ⁡  m                     
						
							2 
								
							 
							ntrnei.f  ⊢   F  =   𝒫  B    O  B      
						
							3 
								
							 
							ntrnei.r   ⊢   φ   →  I  F  N      
						
							4 
								1  2  3 
							 
							ntrneibex   ⊢   φ   →   B  ∈  V         
						
							5 
								4 
							 
							pwexd   ⊢   φ   →    𝒫  B    ∈  V         
						
							6 
								1  5  4  2 
							 
							fsovf1od   ⊢   φ   →   F  :    𝒫  B     𝒫  B      ⟶  1-1 onto   𝒫   𝒫  B      B