Metamath Proof Explorer


Theorem ntrneiiex

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the interior function exists. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneiiex φ I 𝒫 B 𝒫 B

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 1 2 3 ntrneif1o φ F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
5 f1orel F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B Rel F
6 4 5 syl φ Rel F
7 releldm Rel F I F N I dom F
8 6 3 7 syl2anc φ I dom F
9 f1odm F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B dom F = 𝒫 B 𝒫 B
10 4 9 syl φ dom F = 𝒫 B 𝒫 B
11 8 10 eleqtrd φ I 𝒫 B 𝒫 B