| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | ntrnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 3 |  | ntrnei.r | ⊢ ( 𝜑  →  𝐼 𝐹 𝑁 ) | 
						
							| 4 | 1 2 3 | ntrneif1o | ⊢ ( 𝜑  →  𝐹 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) | 
						
							| 5 |  | f1orel | ⊢ ( 𝐹 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 )  →  Rel  𝐹 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  Rel  𝐹 ) | 
						
							| 7 |  | releldm | ⊢ ( ( Rel  𝐹  ∧  𝐼 𝐹 𝑁 )  →  𝐼  ∈  dom  𝐹 ) | 
						
							| 8 | 6 3 7 | syl2anc | ⊢ ( 𝜑  →  𝐼  ∈  dom  𝐹 ) | 
						
							| 9 |  | f1odm | ⊢ ( 𝐹 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 )  →  dom  𝐹  =  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  dom  𝐹  =  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 11 | 8 10 | eleqtrd | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) |