Metamath Proof Explorer


Theorem ntrneiiex

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the interior function exists. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
ntrnei.f
|- F = ( ~P B O B )
ntrnei.r
|- ( ph -> I F N )
Assertion ntrneiiex
|- ( ph -> I e. ( ~P B ^m ~P B ) )

Proof

Step Hyp Ref Expression
1 ntrnei.o
 |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
2 ntrnei.f
 |-  F = ( ~P B O B )
3 ntrnei.r
 |-  ( ph -> I F N )
4 1 2 3 ntrneif1o
 |-  ( ph -> F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) )
5 f1orel
 |-  ( F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) -> Rel F )
6 4 5 syl
 |-  ( ph -> Rel F )
7 releldm
 |-  ( ( Rel F /\ I F N ) -> I e. dom F )
8 6 3 7 syl2anc
 |-  ( ph -> I e. dom F )
9 f1odm
 |-  ( F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) -> dom F = ( ~P B ^m ~P B ) )
10 4 9 syl
 |-  ( ph -> dom F = ( ~P B ^m ~P B ) )
11 8 10 eleqtrd
 |-  ( ph -> I e. ( ~P B ^m ~P B ) )