| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | ntrnei.f |  |-  F = ( ~P B O B ) | 
						
							| 3 |  | ntrnei.r |  |-  ( ph -> I F N ) | 
						
							| 4 | 1 2 3 | ntrneif1o |  |-  ( ph -> F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) ) | 
						
							| 5 |  | f1orel |  |-  ( F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) -> Rel F ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> Rel F ) | 
						
							| 7 |  | releldm |  |-  ( ( Rel F /\ I F N ) -> I e. dom F ) | 
						
							| 8 | 6 3 7 | syl2anc |  |-  ( ph -> I e. dom F ) | 
						
							| 9 |  | f1odm |  |-  ( F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) -> dom F = ( ~P B ^m ~P B ) ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> dom F = ( ~P B ^m ~P B ) ) | 
						
							| 11 | 8 10 | eleqtrd |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) |