| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrnei.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
| 2 |
|
ntrnei.f |
|- F = ( ~P B O B ) |
| 3 |
|
ntrnei.r |
|- ( ph -> I F N ) |
| 4 |
1 2 3
|
ntrneif1o |
|- ( ph -> F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) ) |
| 5 |
|
f1orel |
|- ( F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) -> Rel F ) |
| 6 |
4 5
|
syl |
|- ( ph -> Rel F ) |
| 7 |
|
relelrn |
|- ( ( Rel F /\ I F N ) -> N e. ran F ) |
| 8 |
6 3 7
|
syl2anc |
|- ( ph -> N e. ran F ) |
| 9 |
|
dff1o2 |
|- ( F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) <-> ( F Fn ( ~P B ^m ~P B ) /\ Fun `' F /\ ran F = ( ~P ~P B ^m B ) ) ) |
| 10 |
4 9
|
sylib |
|- ( ph -> ( F Fn ( ~P B ^m ~P B ) /\ Fun `' F /\ ran F = ( ~P ~P B ^m B ) ) ) |
| 11 |
10
|
simp3d |
|- ( ph -> ran F = ( ~P ~P B ^m B ) ) |
| 12 |
8 11
|
eleqtrd |
|- ( ph -> N e. ( ~P ~P B ^m B ) ) |