Metamath Proof Explorer


Theorem ntrneicnv

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then converse of F is known. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
ntrnei.f
|- F = ( ~P B O B )
ntrnei.r
|- ( ph -> I F N )
Assertion ntrneicnv
|- ( ph -> `' F = ( B O ~P B ) )

Proof

Step Hyp Ref Expression
1 ntrnei.o
 |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
2 ntrnei.f
 |-  F = ( ~P B O B )
3 ntrnei.r
 |-  ( ph -> I F N )
4 1 2 3 ntrneibex
 |-  ( ph -> B e. _V )
5 4 pwexd
 |-  ( ph -> ~P B e. _V )
6 eqid
 |-  ( B O ~P B ) = ( B O ~P B )
7 1 5 4 2 6 fsovcnvd
 |-  ( ph -> `' F = ( B O ~P B ) )