Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then converse of F is known. (Contributed by RP, 29-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrnei.o | |- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
|
| ntrnei.f | |- F = ( ~P B O B ) |
||
| ntrnei.r | |- ( ph -> I F N ) |
||
| Assertion | ntrneicnv | |- ( ph -> `' F = ( B O ~P B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.o | |- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
|
| 2 | ntrnei.f | |- F = ( ~P B O B ) |
|
| 3 | ntrnei.r | |- ( ph -> I F N ) |
|
| 4 | 1 2 3 | ntrneibex | |- ( ph -> B e. _V ) |
| 5 | 4 | pwexd | |- ( ph -> ~P B e. _V ) |
| 6 | eqid | |- ( B O ~P B ) = ( B O ~P B ) |
|
| 7 | 1 5 4 2 6 | fsovcnvd | |- ( ph -> `' F = ( B O ~P B ) ) |