Metamath Proof Explorer


Theorem ntrneicnv

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then converse of F is known. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
Assertion ntrneicnv ( 𝜑 𝐹 = ( 𝐵 𝑂 𝒫 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ntrnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 ntrnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
3 ntrnei.r ( 𝜑𝐼 𝐹 𝑁 )
4 1 2 3 ntrneibex ( 𝜑𝐵 ∈ V )
5 4 pwexd ( 𝜑 → 𝒫 𝐵 ∈ V )
6 eqid ( 𝐵 𝑂 𝒫 𝐵 ) = ( 𝐵 𝑂 𝒫 𝐵 )
7 1 5 4 2 6 fsovcnvd ( 𝜑 𝐹 = ( 𝐵 𝑂 𝒫 𝐵 ) )