| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | ntrnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 3 |  | ntrnei.r | ⊢ ( 𝜑  →  𝐼 𝐹 𝑁 ) | 
						
							| 4 | 1 2 3 | ntrneif1o | ⊢ ( 𝜑  →  𝐹 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) | 
						
							| 5 |  | f1ofn | ⊢ ( 𝐹 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 )  →  𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 7 | 1 2 3 | ntrneiiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 8 | 6 7 | jca | ⊢ ( 𝜑  →  ( 𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) ) | 
						
							| 9 |  | fnfun | ⊢ ( 𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  Fun  𝐹 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  Fun  𝐹 ) | 
						
							| 11 |  | fndm | ⊢ ( 𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  dom  𝐹  =  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( 𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  ( 𝐼  ∈  dom  𝐹  ↔  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) ) | 
						
							| 13 | 12 | biimpar | ⊢ ( ( 𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  𝐼  ∈  dom  𝐹 ) | 
						
							| 14 | 10 13 | jca | ⊢ ( ( 𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  ( Fun  𝐹  ∧  𝐼  ∈  dom  𝐹 ) ) | 
						
							| 15 |  | funbrfvb | ⊢ ( ( Fun  𝐹  ∧  𝐼  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝐼 )  =  𝑁  ↔  𝐼 𝐹 𝑁 ) ) | 
						
							| 16 | 8 14 15 | 3syl | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐼 )  =  𝑁  ↔  𝐼 𝐹 𝑁 ) ) | 
						
							| 17 | 3 16 | mpbird | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐼 )  =  𝑁 ) |