Metamath Proof Explorer


Theorem ntrneifv1

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the function value of F is the neighborhood function. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
ntrnei.f
|- F = ( ~P B O B )
ntrnei.r
|- ( ph -> I F N )
Assertion ntrneifv1
|- ( ph -> ( F ` I ) = N )

Proof

Step Hyp Ref Expression
1 ntrnei.o
 |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
2 ntrnei.f
 |-  F = ( ~P B O B )
3 ntrnei.r
 |-  ( ph -> I F N )
4 1 2 3 ntrneif1o
 |-  ( ph -> F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) )
5 f1ofn
 |-  ( F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) -> F Fn ( ~P B ^m ~P B ) )
6 4 5 syl
 |-  ( ph -> F Fn ( ~P B ^m ~P B ) )
7 1 2 3 ntrneiiex
 |-  ( ph -> I e. ( ~P B ^m ~P B ) )
8 6 7 jca
 |-  ( ph -> ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) )
9 fnfun
 |-  ( F Fn ( ~P B ^m ~P B ) -> Fun F )
10 9 adantr
 |-  ( ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> Fun F )
11 fndm
 |-  ( F Fn ( ~P B ^m ~P B ) -> dom F = ( ~P B ^m ~P B ) )
12 11 eleq2d
 |-  ( F Fn ( ~P B ^m ~P B ) -> ( I e. dom F <-> I e. ( ~P B ^m ~P B ) ) )
13 12 biimpar
 |-  ( ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> I e. dom F )
14 10 13 jca
 |-  ( ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> ( Fun F /\ I e. dom F ) )
15 funbrfvb
 |-  ( ( Fun F /\ I e. dom F ) -> ( ( F ` I ) = N <-> I F N ) )
16 8 14 15 3syl
 |-  ( ph -> ( ( F ` I ) = N <-> I F N ) )
17 3 16 mpbird
 |-  ( ph -> ( F ` I ) = N )