Step |
Hyp |
Ref |
Expression |
1 |
|
ntrnei.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
2 |
|
ntrnei.f |
|- F = ( ~P B O B ) |
3 |
|
ntrnei.r |
|- ( ph -> I F N ) |
4 |
1 2 3
|
ntrneif1o |
|- ( ph -> F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) ) |
5 |
|
f1ofn |
|- ( F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) -> F Fn ( ~P B ^m ~P B ) ) |
6 |
4 5
|
syl |
|- ( ph -> F Fn ( ~P B ^m ~P B ) ) |
7 |
1 2 3
|
ntrneiiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
8 |
6 7
|
jca |
|- ( ph -> ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) ) |
9 |
|
fnfun |
|- ( F Fn ( ~P B ^m ~P B ) -> Fun F ) |
10 |
9
|
adantr |
|- ( ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> Fun F ) |
11 |
|
fndm |
|- ( F Fn ( ~P B ^m ~P B ) -> dom F = ( ~P B ^m ~P B ) ) |
12 |
11
|
eleq2d |
|- ( F Fn ( ~P B ^m ~P B ) -> ( I e. dom F <-> I e. ( ~P B ^m ~P B ) ) ) |
13 |
12
|
biimpar |
|- ( ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> I e. dom F ) |
14 |
10 13
|
jca |
|- ( ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> ( Fun F /\ I e. dom F ) ) |
15 |
|
funbrfvb |
|- ( ( Fun F /\ I e. dom F ) -> ( ( F ` I ) = N <-> I F N ) ) |
16 |
8 14 15
|
3syl |
|- ( ph -> ( ( F ` I ) = N <-> I F N ) ) |
17 |
3 16
|
mpbird |
|- ( ph -> ( F ` I ) = N ) |