| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | ntrnei.f |  |-  F = ( ~P B O B ) | 
						
							| 3 |  | ntrnei.r |  |-  ( ph -> I F N ) | 
						
							| 4 | 1 2 3 | ntrneif1o |  |-  ( ph -> F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) ) | 
						
							| 5 |  | f1ofn |  |-  ( F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) -> F Fn ( ~P B ^m ~P B ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> F Fn ( ~P B ^m ~P B ) ) | 
						
							| 7 | 1 2 3 | ntrneiiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 8 | 6 7 | jca |  |-  ( ph -> ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) ) | 
						
							| 9 |  | fnfun |  |-  ( F Fn ( ~P B ^m ~P B ) -> Fun F ) | 
						
							| 10 | 9 | adantr |  |-  ( ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> Fun F ) | 
						
							| 11 |  | fndm |  |-  ( F Fn ( ~P B ^m ~P B ) -> dom F = ( ~P B ^m ~P B ) ) | 
						
							| 12 | 11 | eleq2d |  |-  ( F Fn ( ~P B ^m ~P B ) -> ( I e. dom F <-> I e. ( ~P B ^m ~P B ) ) ) | 
						
							| 13 | 12 | biimpar |  |-  ( ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> I e. dom F ) | 
						
							| 14 | 10 13 | jca |  |-  ( ( F Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> ( Fun F /\ I e. dom F ) ) | 
						
							| 15 |  | funbrfvb |  |-  ( ( Fun F /\ I e. dom F ) -> ( ( F ` I ) = N <-> I F N ) ) | 
						
							| 16 | 8 14 15 | 3syl |  |-  ( ph -> ( ( F ` I ) = N <-> I F N ) ) | 
						
							| 17 | 3 16 | mpbird |  |-  ( ph -> ( F ` I ) = N ) |