Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Richard Penner Exploring Topology via Seifert and Threlfall Equinumerosity of sets of relations and maps fsovcnvd  
				
		 
		
			
		 
		Description:   The value of the converse ( A O B )  is ( B O A )  , where
             O  is the operator which maps between maps from one base set to
             subsets of the second to maps from the second base set to subsets
             of the first for base sets, gives a family of functions that
             include their own inverse.  (Contributed by RP , 27-Apr-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						fsovd.fs ⊢  𝑂   =  ( 𝑎   ∈  V ,  𝑏   ∈  V  ↦  ( 𝑓   ∈  ( 𝒫  𝑏   ↑m   𝑎  )  ↦  ( 𝑦   ∈  𝑏   ↦  { 𝑥   ∈  𝑎   ∣  𝑦   ∈  ( 𝑓  ‘ 𝑥  ) } ) ) )  
					
						fsovd.a ⊢  ( 𝜑   →  𝐴   ∈  𝑉  )  
					
						fsovd.b ⊢  ( 𝜑   →  𝐵   ∈  𝑊  )  
					
						fsovfvd.g ⊢  𝐺   =  ( 𝐴  𝑂  𝐵  )  
					
						fsovcnvlem.h ⊢  𝐻   =  ( 𝐵  𝑂  𝐴  )  
				
					Assertion 
					fsovcnvd ⊢   ( 𝜑   →  ◡ 𝐺   =  𝐻  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							fsovd.fs ⊢  𝑂   =  ( 𝑎   ∈  V ,  𝑏   ∈  V  ↦  ( 𝑓   ∈  ( 𝒫  𝑏   ↑m   𝑎  )  ↦  ( 𝑦   ∈  𝑏   ↦  { 𝑥   ∈  𝑎   ∣  𝑦   ∈  ( 𝑓  ‘ 𝑥  ) } ) ) )  
						
							2 
								
							 
							fsovd.a ⊢  ( 𝜑   →  𝐴   ∈  𝑉  )  
						
							3 
								
							 
							fsovd.b ⊢  ( 𝜑   →  𝐵   ∈  𝑊  )  
						
							4 
								
							 
							fsovfvd.g ⊢  𝐺   =  ( 𝐴  𝑂  𝐵  )  
						
							5 
								
							 
							fsovcnvlem.h ⊢  𝐻   =  ( 𝐵  𝑂  𝐴  )  
						
							6 
								1  2  3  4 
							 
							fsovfd ⊢  ( 𝜑   →  𝐺  : ( 𝒫  𝐵   ↑m   𝐴  ) ⟶ ( 𝒫  𝐴   ↑m   𝐵  ) )  
						
							7 
								1  3  2  5 
							 
							fsovfd ⊢  ( 𝜑   →  𝐻  : ( 𝒫  𝐴   ↑m   𝐵  ) ⟶ ( 𝒫  𝐵   ↑m   𝐴  ) )  
						
							8 
								1  2  3  4  5 
							 
							fsovcnvlem ⊢  ( 𝜑   →  ( 𝐻   ∘  𝐺  )  =  (  I   ↾  ( 𝒫  𝐵   ↑m   𝐴  ) ) )  
						
							9 
								1  3  2  5  4 
							 
							fsovcnvlem ⊢  ( 𝜑   →  ( 𝐺   ∘  𝐻  )  =  (  I   ↾  ( 𝒫  𝐴   ↑m   𝐵  ) ) )  
						
							10 
								6  7  8  9 
							 
							2fcoidinvd ⊢  ( 𝜑   →  ◡ 𝐺   =  𝐻  )