Step |
Hyp |
Ref |
Expression |
1 |
|
fsovd.fs |
⊢ 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝑎 ) ↦ ( 𝑦 ∈ 𝑏 ↦ { 𝑥 ∈ 𝑎 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) ) ) |
2 |
|
fsovd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
fsovd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
4 |
|
fsovfvd.g |
⊢ 𝐺 = ( 𝐴 𝑂 𝐵 ) |
5 |
1 2 3
|
fsovd |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) ) ) |
6 |
4 5
|
syl5eq |
⊢ ( 𝜑 → 𝐺 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) ) ) |
7 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ⊆ 𝐴 |
8 |
7
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ⊆ 𝐴 ) |
9 |
2 8
|
sselpwd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ∈ 𝒫 𝐴 ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ∈ 𝒫 𝐴 ) |
11 |
10
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) : 𝐵 ⟶ 𝒫 𝐴 ) |
12 |
2
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐴 ∈ V ) |
13 |
12 3
|
elmapd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) ∈ ( 𝒫 𝐴 ↑m 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) : 𝐵 ⟶ 𝒫 𝐴 ) ) |
14 |
11 13
|
mpbird |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) ∈ ( 𝒫 𝐴 ↑m 𝐵 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) ∈ ( 𝒫 𝐴 ↑m 𝐵 ) ) |
16 |
6 15
|
fmpt3d |
⊢ ( 𝜑 → 𝐺 : ( 𝒫 𝐵 ↑m 𝐴 ) ⟶ ( 𝒫 𝐴 ↑m 𝐵 ) ) |