| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsovd.fs | ⊢ 𝑂  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑓  ∈  ( 𝒫  𝑏  ↑m  𝑎 )  ↦  ( 𝑦  ∈  𝑏  ↦  { 𝑥  ∈  𝑎  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) ) | 
						
							| 2 |  | fsovd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | fsovd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 4 | 1 | a1i | ⊢ ( 𝜑  →  𝑂  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑓  ∈  ( 𝒫  𝑏  ↑m  𝑎 )  ↦  ( 𝑦  ∈  𝑏  ↦  { 𝑥  ∈  𝑎  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) ) ) | 
						
							| 5 |  | pweq | ⊢ ( 𝑏  =  𝐵  →  𝒫  𝑏  =  𝒫  𝐵 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝒫  𝑏  =  𝒫  𝐵 ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝑎  =  𝐴 ) | 
						
							| 8 | 6 7 | oveq12d | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝒫  𝑏  ↑m  𝑎 )  =  ( 𝒫  𝐵  ↑m  𝐴 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝑏  =  𝐵 ) | 
						
							| 10 |  | rabeq | ⊢ ( 𝑎  =  𝐴  →  { 𝑥  ∈  𝑎  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  { 𝑥  ∈  𝑎  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) | 
						
							| 12 | 9 11 | mpteq12dv | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑦  ∈  𝑏  ↦  { 𝑥  ∈  𝑎  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } )  =  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) | 
						
							| 13 | 8 12 | mpteq12dv | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑓  ∈  ( 𝒫  𝑏  ↑m  𝑎 )  ↦  ( 𝑦  ∈  𝑏  ↦  { 𝑥  ∈  𝑎  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 ) )  →  ( 𝑓  ∈  ( 𝒫  𝑏  ↑m  𝑎 )  ↦  ( 𝑦  ∈  𝑏  ↦  { 𝑥  ∈  𝑎  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) ) | 
						
							| 15 | 2 | elexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 16 | 3 | elexd | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 17 |  | ovex | ⊢ ( 𝒫  𝐵  ↑m  𝐴 )  ∈  V | 
						
							| 18 | 17 | mptex | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) )  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) )  ∈  V ) | 
						
							| 20 | 4 14 15 16 19 | ovmpod | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵 )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) ) |