| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsovd.fs | ⊢ 𝑂  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑓  ∈  ( 𝒫  𝑏  ↑m  𝑎 )  ↦  ( 𝑦  ∈  𝑏  ↦  { 𝑥  ∈  𝑎  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) ) | 
						
							| 2 |  | fsovd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | fsovd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 4 |  | fsovd.rf | ⊢ 𝑅  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ( 𝑢  ∈  𝑎  ↦  { 𝑣  ∈  𝑏  ∣  𝑢 𝑟 𝑣 } ) ) ) | 
						
							| 5 |  | fsovd.cnv | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑠  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ◡ 𝑠 ) ) | 
						
							| 6 | 3 2 | xpexd | ⊢ ( 𝜑  →  ( 𝐵  ×  𝐴 )  ∈  V ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  ( 𝐵  ×  𝐴 )  ∈  V ) | 
						
							| 8 |  | elmapi | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  𝑓 : 𝐴 ⟶ 𝒫  𝐵 ) | 
						
							| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑢 )  ∈  𝒫  𝐵 ) | 
						
							| 10 | 9 | elpwid | ⊢ ( ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑢 )  ⊆  𝐵 ) | 
						
							| 11 | 10 | sseld | ⊢ ( ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑣  ∈  ( 𝑓 ‘ 𝑢 )  →  𝑣  ∈  𝐵 ) ) | 
						
							| 12 | 11 | impancom | ⊢ ( ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) )  →  ( 𝑢  ∈  𝐴  →  𝑣  ∈  𝐵 ) ) | 
						
							| 13 | 12 | pm4.71d | ⊢ ( ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) )  →  ( 𝑢  ∈  𝐴  ↔  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐵 ) ) ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  ( 𝑣  ∈  ( 𝑓 ‘ 𝑢 )  →  ( 𝑢  ∈  𝐴  ↔  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐵 ) ) ) ) | 
						
							| 15 | 14 | pm5.32rd | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) )  ↔  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐵 )  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) ) ) | 
						
							| 16 |  | ancom | ⊢ ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐵 )  ↔  ( 𝑣  ∈  𝐵  ∧  𝑢  ∈  𝐴 ) ) | 
						
							| 17 | 16 | anbi1i | ⊢ ( ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐵 )  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) )  ↔  ( ( 𝑣  ∈  𝐵  ∧  𝑢  ∈  𝐴 )  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 18 | 15 17 | bitrdi | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) )  ↔  ( ( 𝑣  ∈  𝐵  ∧  𝑢  ∈  𝐴 )  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) ) ) | 
						
							| 19 | 18 | opabbidv | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  =  { 〈 𝑣 ,  𝑢 〉  ∣  ( ( 𝑣  ∈  𝐵  ∧  𝑢  ∈  𝐴 )  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) | 
						
							| 20 |  | opabssxp | ⊢ { 〈 𝑣 ,  𝑢 〉  ∣  ( ( 𝑣  ∈  𝐵  ∧  𝑢  ∈  𝐴 )  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ⊆  ( 𝐵  ×  𝐴 ) | 
						
							| 21 | 19 20 | eqsstrdi | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ⊆  ( 𝐵  ×  𝐴 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ⊆  ( 𝐵  ×  𝐴 ) ) | 
						
							| 23 | 7 22 | sselpwd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ∈  𝒫  ( 𝐵  ×  𝐴 ) ) | 
						
							| 24 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) ) | 
						
							| 25 | 4 3 2 | rfovd | ⊢ ( 𝜑  →  ( 𝐵 𝑅 𝐴 )  =  ( 𝑟  ∈  𝒫  ( 𝐵  ×  𝐴 )  ↦  ( 𝑢  ∈  𝐵  ↦  { 𝑣  ∈  𝐴  ∣  𝑢 𝑟 𝑣 } ) ) ) | 
						
							| 26 |  | breq | ⊢ ( 𝑟  =  𝑡  →  ( 𝑢 𝑟 𝑣  ↔  𝑢 𝑡 𝑣 ) ) | 
						
							| 27 | 26 | rabbidv | ⊢ ( 𝑟  =  𝑡  →  { 𝑣  ∈  𝐴  ∣  𝑢 𝑟 𝑣 }  =  { 𝑣  ∈  𝐴  ∣  𝑢 𝑡 𝑣 } ) | 
						
							| 28 | 27 | mpteq2dv | ⊢ ( 𝑟  =  𝑡  →  ( 𝑢  ∈  𝐵  ↦  { 𝑣  ∈  𝐴  ∣  𝑢 𝑟 𝑣 } )  =  ( 𝑢  ∈  𝐵  ↦  { 𝑣  ∈  𝐴  ∣  𝑢 𝑡 𝑣 } ) ) | 
						
							| 29 |  | breq1 | ⊢ ( 𝑢  =  𝑐  →  ( 𝑢 𝑡 𝑣  ↔  𝑐 𝑡 𝑣 ) ) | 
						
							| 30 | 29 | rabbidv | ⊢ ( 𝑢  =  𝑐  →  { 𝑣  ∈  𝐴  ∣  𝑢 𝑡 𝑣 }  =  { 𝑣  ∈  𝐴  ∣  𝑐 𝑡 𝑣 } ) | 
						
							| 31 |  | breq2 | ⊢ ( 𝑣  =  𝑑  →  ( 𝑐 𝑡 𝑣  ↔  𝑐 𝑡 𝑑 ) ) | 
						
							| 32 | 31 | cbvrabv | ⊢ { 𝑣  ∈  𝐴  ∣  𝑐 𝑡 𝑣 }  =  { 𝑑  ∈  𝐴  ∣  𝑐 𝑡 𝑑 } | 
						
							| 33 | 30 32 | eqtrdi | ⊢ ( 𝑢  =  𝑐  →  { 𝑣  ∈  𝐴  ∣  𝑢 𝑡 𝑣 }  =  { 𝑑  ∈  𝐴  ∣  𝑐 𝑡 𝑑 } ) | 
						
							| 34 | 33 | cbvmptv | ⊢ ( 𝑢  ∈  𝐵  ↦  { 𝑣  ∈  𝐴  ∣  𝑢 𝑡 𝑣 } )  =  ( 𝑐  ∈  𝐵  ↦  { 𝑑  ∈  𝐴  ∣  𝑐 𝑡 𝑑 } ) | 
						
							| 35 | 28 34 | eqtrdi | ⊢ ( 𝑟  =  𝑡  →  ( 𝑢  ∈  𝐵  ↦  { 𝑣  ∈  𝐴  ∣  𝑢 𝑟 𝑣 } )  =  ( 𝑐  ∈  𝐵  ↦  { 𝑑  ∈  𝐴  ∣  𝑐 𝑡 𝑑 } ) ) | 
						
							| 36 | 35 | cbvmptv | ⊢ ( 𝑟  ∈  𝒫  ( 𝐵  ×  𝐴 )  ↦  ( 𝑢  ∈  𝐵  ↦  { 𝑣  ∈  𝐴  ∣  𝑢 𝑟 𝑣 } ) )  =  ( 𝑡  ∈  𝒫  ( 𝐵  ×  𝐴 )  ↦  ( 𝑐  ∈  𝐵  ↦  { 𝑑  ∈  𝐴  ∣  𝑐 𝑡 𝑑 } ) ) | 
						
							| 37 | 25 36 | eqtrdi | ⊢ ( 𝜑  →  ( 𝐵 𝑅 𝐴 )  =  ( 𝑡  ∈  𝒫  ( 𝐵  ×  𝐴 )  ↦  ( 𝑐  ∈  𝐵  ↦  { 𝑑  ∈  𝐴  ∣  𝑐 𝑡 𝑑 } ) ) ) | 
						
							| 38 |  | breq | ⊢ ( 𝑡  =  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  →  ( 𝑐 𝑡 𝑑  ↔  𝑐 { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } 𝑑 ) ) | 
						
							| 39 |  | df-br | ⊢ ( 𝑐 { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } 𝑑  ↔  〈 𝑐 ,  𝑑 〉  ∈  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) | 
						
							| 40 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 41 |  | vex | ⊢ 𝑑  ∈  V | 
						
							| 42 |  | eleq1w | ⊢ ( 𝑣  =  𝑐  →  ( 𝑣  ∈  ( 𝑓 ‘ 𝑢 )  ↔  𝑐  ∈  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 43 | 42 | anbi2d | ⊢ ( 𝑣  =  𝑐  →  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) )  ↔  ( 𝑢  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑢 ) ) ) ) | 
						
							| 44 |  | eleq1w | ⊢ ( 𝑢  =  𝑑  →  ( 𝑢  ∈  𝐴  ↔  𝑑  ∈  𝐴 ) ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑢  =  𝑑  →  ( 𝑓 ‘ 𝑢 )  =  ( 𝑓 ‘ 𝑑 ) ) | 
						
							| 46 | 45 | eleq2d | ⊢ ( 𝑢  =  𝑑  →  ( 𝑐  ∈  ( 𝑓 ‘ 𝑢 )  ↔  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) ) | 
						
							| 47 | 44 46 | anbi12d | ⊢ ( 𝑢  =  𝑑  →  ( ( 𝑢  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑢 ) )  ↔  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) ) ) | 
						
							| 48 | 40 41 43 47 | opelopab | ⊢ ( 〈 𝑐 ,  𝑑 〉  ∈  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ↔  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) ) | 
						
							| 49 | 39 48 | bitri | ⊢ ( 𝑐 { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } 𝑑  ↔  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) ) | 
						
							| 50 | 38 49 | bitrdi | ⊢ ( 𝑡  =  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  →  ( 𝑐 𝑡 𝑑  ↔  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) ) ) | 
						
							| 51 | 50 | rabbidv | ⊢ ( 𝑡  =  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  →  { 𝑑  ∈  𝐴  ∣  𝑐 𝑡 𝑑 }  =  { 𝑑  ∈  𝐴  ∣  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) } ) | 
						
							| 52 | 51 | mpteq2dv | ⊢ ( 𝑡  =  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  →  ( 𝑐  ∈  𝐵  ↦  { 𝑑  ∈  𝐴  ∣  𝑐 𝑡 𝑑 } )  =  ( 𝑐  ∈  𝐵  ↦  { 𝑑  ∈  𝐴  ∣  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) } ) ) | 
						
							| 53 |  | ibar | ⊢ ( 𝑑  ∈  𝐴  →  ( 𝑐  ∈  ( 𝑓 ‘ 𝑑 )  ↔  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) ) ) | 
						
							| 54 | 53 | bicomd | ⊢ ( 𝑑  ∈  𝐴  →  ( ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) )  ↔  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) ) | 
						
							| 55 | 54 | rabbiia | ⊢ { 𝑑  ∈  𝐴  ∣  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) }  =  { 𝑑  ∈  𝐴  ∣  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) } | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑑  =  𝑥  →  ( 𝑓 ‘ 𝑑 )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 57 | 56 | eleq2d | ⊢ ( 𝑑  =  𝑥  →  ( 𝑐  ∈  ( 𝑓 ‘ 𝑑 )  ↔  𝑐  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 58 | 57 | cbvrabv | ⊢ { 𝑑  ∈  𝐴  ∣  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) }  =  { 𝑥  ∈  𝐴  ∣  𝑐  ∈  ( 𝑓 ‘ 𝑥 ) } | 
						
							| 59 | 55 58 | eqtri | ⊢ { 𝑑  ∈  𝐴  ∣  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) }  =  { 𝑥  ∈  𝐴  ∣  𝑐  ∈  ( 𝑓 ‘ 𝑥 ) } | 
						
							| 60 | 59 | mpteq2i | ⊢ ( 𝑐  ∈  𝐵  ↦  { 𝑑  ∈  𝐴  ∣  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) } )  =  ( 𝑐  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑐  ∈  ( 𝑓 ‘ 𝑥 ) } ) | 
						
							| 61 |  | eleq1w | ⊢ ( 𝑐  =  𝑦  →  ( 𝑐  ∈  ( 𝑓 ‘ 𝑥 )  ↔  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 62 | 61 | rabbidv | ⊢ ( 𝑐  =  𝑦  →  { 𝑥  ∈  𝐴  ∣  𝑐  ∈  ( 𝑓 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) | 
						
							| 63 | 62 | cbvmptv | ⊢ ( 𝑐  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑐  ∈  ( 𝑓 ‘ 𝑥 ) } )  =  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) | 
						
							| 64 | 60 63 | eqtri | ⊢ ( 𝑐  ∈  𝐵  ↦  { 𝑑  ∈  𝐴  ∣  ( 𝑑  ∈  𝐴  ∧  𝑐  ∈  ( 𝑓 ‘ 𝑑 ) ) } )  =  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) | 
						
							| 65 | 52 64 | eqtrdi | ⊢ ( 𝑡  =  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  →  ( 𝑐  ∈  𝐵  ↦  { 𝑑  ∈  𝐴  ∣  𝑐 𝑡 𝑑 } )  =  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) | 
						
							| 66 | 23 24 37 65 | fmptco | ⊢ ( 𝜑  →  ( ( 𝐵 𝑅 𝐴 )  ∘  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) ) | 
						
							| 67 | 2 3 | xpexd | ⊢ ( 𝜑  →  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 69 | 15 | opabbidv | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐵 )  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) | 
						
							| 70 |  | opabssxp | ⊢ { 〈 𝑢 ,  𝑣 〉  ∣  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  𝐵 )  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ⊆  ( 𝐴  ×  𝐵 ) | 
						
							| 71 | 69 70 | eqsstrdi | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 73 | 68 72 | sselpwd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ∈  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 74 |  | eqid | ⊢ ( 𝐴 𝑅 𝐵 )  =  ( 𝐴 𝑅 𝐵 ) | 
						
							| 75 | 4 2 3 74 | rfovcnvd | ⊢ ( 𝜑  →  ◡ ( 𝐴 𝑅 𝐵 )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) ) | 
						
							| 76 | 5 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑠  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ◡ 𝑠 ) ) ) | 
						
							| 77 |  | xpeq12 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎  ×  𝑏 )  =  ( 𝐴  ×  𝐵 ) ) | 
						
							| 78 | 77 | pweqd | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝒫  ( 𝑎  ×  𝑏 )  =  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 79 | 78 | mpteq1d | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑠  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ◡ 𝑠 )  =  ( 𝑠  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ◡ 𝑠 ) ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 ) )  →  ( 𝑠  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ◡ 𝑠 )  =  ( 𝑠  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ◡ 𝑠 ) ) | 
						
							| 81 | 2 | elexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 82 | 3 | elexd | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 83 |  | pwexg | ⊢ ( ( 𝐴  ×  𝐵 )  ∈  V  →  𝒫  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 84 |  | mptexg | ⊢ ( 𝒫  ( 𝐴  ×  𝐵 )  ∈  V  →  ( 𝑠  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ◡ 𝑠 )  ∈  V ) | 
						
							| 85 | 67 83 84 | 3syl | ⊢ ( 𝜑  →  ( 𝑠  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ◡ 𝑠 )  ∈  V ) | 
						
							| 86 | 76 80 81 82 85 | ovmpod | ⊢ ( 𝜑  →  ( 𝐴 𝐶 𝐵 )  =  ( 𝑠  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ◡ 𝑠 ) ) | 
						
							| 87 |  | cnveq | ⊢ ( 𝑠  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  →  ◡ 𝑠  =  ◡ { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) | 
						
							| 88 |  | cnvopab | ⊢ ◡ { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  =  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } | 
						
							| 89 | 87 88 | eqtrdi | ⊢ ( 𝑠  =  { 〈 𝑢 ,  𝑣 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) }  →  ◡ 𝑠  =  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) | 
						
							| 90 | 73 75 86 89 | fmptco | ⊢ ( 𝜑  →  ( ( 𝐴 𝐶 𝐵 )  ∘  ◡ ( 𝐴 𝑅 𝐵 ) )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) ) | 
						
							| 91 | 90 | coeq2d | ⊢ ( 𝜑  →  ( ( 𝐵 𝑅 𝐴 )  ∘  ( ( 𝐴 𝐶 𝐵 )  ∘  ◡ ( 𝐴 𝑅 𝐵 ) ) )  =  ( ( 𝐵 𝑅 𝐴 )  ∘  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑣 ,  𝑢 〉  ∣  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) ) ) | 
						
							| 92 | 1 2 3 | fsovd | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵 )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  ( 𝑦  ∈  𝐵  ↦  { 𝑥  ∈  𝐴  ∣  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) } ) ) ) | 
						
							| 93 | 66 91 92 | 3eqtr4rd | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵 )  =  ( ( 𝐵 𝑅 𝐴 )  ∘  ( ( 𝐴 𝐶 𝐵 )  ∘  ◡ ( 𝐴 𝑅 𝐵 ) ) ) ) |