Step |
Hyp |
Ref |
Expression |
1 |
|
fsovd.fs |
⊢ 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑓 ∈ ( 𝒫 𝑏 ↑m 𝑎 ) ↦ ( 𝑦 ∈ 𝑏 ↦ { 𝑥 ∈ 𝑎 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) ) ) |
2 |
|
fsovd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
fsovd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
4 |
|
fsovd.rf |
⊢ 𝑅 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑢 ∈ 𝑎 ↦ { 𝑣 ∈ 𝑏 ∣ 𝑢 𝑟 𝑣 } ) ) ) |
5 |
|
fsovd.cnv |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ◡ 𝑠 ) ) |
6 |
3 2
|
xpexd |
⊢ ( 𝜑 → ( 𝐵 × 𝐴 ) ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → ( 𝐵 × 𝐴 ) ∈ V ) |
8 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) |
9 |
8
|
ffvelrnda |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑢 ) ∈ 𝒫 𝐵 ) |
10 |
9
|
elpwid |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑢 ) ⊆ 𝐵 ) |
11 |
10
|
sseld |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) → 𝑣 ∈ 𝐵 ) ) |
12 |
11
|
impancom |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) → ( 𝑢 ∈ 𝐴 → 𝑣 ∈ 𝐵 ) ) |
13 |
12
|
pm4.71d |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) → ( 𝑢 ∈ 𝐴 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ) |
14 |
13
|
ex |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → ( 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) → ( 𝑢 ∈ 𝐴 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ) ) ) |
15 |
14
|
pm5.32rd |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) |
16 |
|
ancom |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ↔ ( 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ) |
17 |
16
|
anbi1i |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ↔ ( ( 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
18 |
15 17
|
bitrdi |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ↔ ( ( 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) |
19 |
18
|
opabbidv |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } = { 〈 𝑣 , 𝑢 〉 ∣ ( ( 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) |
20 |
|
opabssxp |
⊢ { 〈 𝑣 , 𝑢 〉 ∣ ( ( 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ⊆ ( 𝐵 × 𝐴 ) |
21 |
19 20
|
eqsstrdi |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ⊆ ( 𝐵 × 𝐴 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ⊆ ( 𝐵 × 𝐴 ) ) |
23 |
7 22
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ∈ 𝒫 ( 𝐵 × 𝐴 ) ) |
24 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) ) |
25 |
4 3 2
|
rfovd |
⊢ ( 𝜑 → ( 𝐵 𝑅 𝐴 ) = ( 𝑟 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↦ ( 𝑢 ∈ 𝐵 ↦ { 𝑣 ∈ 𝐴 ∣ 𝑢 𝑟 𝑣 } ) ) ) |
26 |
|
breq |
⊢ ( 𝑟 = 𝑡 → ( 𝑢 𝑟 𝑣 ↔ 𝑢 𝑡 𝑣 ) ) |
27 |
26
|
rabbidv |
⊢ ( 𝑟 = 𝑡 → { 𝑣 ∈ 𝐴 ∣ 𝑢 𝑟 𝑣 } = { 𝑣 ∈ 𝐴 ∣ 𝑢 𝑡 𝑣 } ) |
28 |
27
|
mpteq2dv |
⊢ ( 𝑟 = 𝑡 → ( 𝑢 ∈ 𝐵 ↦ { 𝑣 ∈ 𝐴 ∣ 𝑢 𝑟 𝑣 } ) = ( 𝑢 ∈ 𝐵 ↦ { 𝑣 ∈ 𝐴 ∣ 𝑢 𝑡 𝑣 } ) ) |
29 |
|
breq1 |
⊢ ( 𝑢 = 𝑐 → ( 𝑢 𝑡 𝑣 ↔ 𝑐 𝑡 𝑣 ) ) |
30 |
29
|
rabbidv |
⊢ ( 𝑢 = 𝑐 → { 𝑣 ∈ 𝐴 ∣ 𝑢 𝑡 𝑣 } = { 𝑣 ∈ 𝐴 ∣ 𝑐 𝑡 𝑣 } ) |
31 |
|
breq2 |
⊢ ( 𝑣 = 𝑑 → ( 𝑐 𝑡 𝑣 ↔ 𝑐 𝑡 𝑑 ) ) |
32 |
31
|
cbvrabv |
⊢ { 𝑣 ∈ 𝐴 ∣ 𝑐 𝑡 𝑣 } = { 𝑑 ∈ 𝐴 ∣ 𝑐 𝑡 𝑑 } |
33 |
30 32
|
eqtrdi |
⊢ ( 𝑢 = 𝑐 → { 𝑣 ∈ 𝐴 ∣ 𝑢 𝑡 𝑣 } = { 𝑑 ∈ 𝐴 ∣ 𝑐 𝑡 𝑑 } ) |
34 |
33
|
cbvmptv |
⊢ ( 𝑢 ∈ 𝐵 ↦ { 𝑣 ∈ 𝐴 ∣ 𝑢 𝑡 𝑣 } ) = ( 𝑐 ∈ 𝐵 ↦ { 𝑑 ∈ 𝐴 ∣ 𝑐 𝑡 𝑑 } ) |
35 |
28 34
|
eqtrdi |
⊢ ( 𝑟 = 𝑡 → ( 𝑢 ∈ 𝐵 ↦ { 𝑣 ∈ 𝐴 ∣ 𝑢 𝑟 𝑣 } ) = ( 𝑐 ∈ 𝐵 ↦ { 𝑑 ∈ 𝐴 ∣ 𝑐 𝑡 𝑑 } ) ) |
36 |
35
|
cbvmptv |
⊢ ( 𝑟 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↦ ( 𝑢 ∈ 𝐵 ↦ { 𝑣 ∈ 𝐴 ∣ 𝑢 𝑟 𝑣 } ) ) = ( 𝑡 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↦ ( 𝑐 ∈ 𝐵 ↦ { 𝑑 ∈ 𝐴 ∣ 𝑐 𝑡 𝑑 } ) ) |
37 |
25 36
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐵 𝑅 𝐴 ) = ( 𝑡 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↦ ( 𝑐 ∈ 𝐵 ↦ { 𝑑 ∈ 𝐴 ∣ 𝑐 𝑡 𝑑 } ) ) ) |
38 |
|
breq |
⊢ ( 𝑡 = { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } → ( 𝑐 𝑡 𝑑 ↔ 𝑐 { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } 𝑑 ) ) |
39 |
|
df-br |
⊢ ( 𝑐 { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } 𝑑 ↔ 〈 𝑐 , 𝑑 〉 ∈ { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) |
40 |
|
vex |
⊢ 𝑐 ∈ V |
41 |
|
vex |
⊢ 𝑑 ∈ V |
42 |
|
eleq1w |
⊢ ( 𝑣 = 𝑐 → ( 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ↔ 𝑐 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
43 |
42
|
anbi2d |
⊢ ( 𝑣 = 𝑐 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) |
44 |
|
eleq1w |
⊢ ( 𝑢 = 𝑑 → ( 𝑢 ∈ 𝐴 ↔ 𝑑 ∈ 𝐴 ) ) |
45 |
|
fveq2 |
⊢ ( 𝑢 = 𝑑 → ( 𝑓 ‘ 𝑢 ) = ( 𝑓 ‘ 𝑑 ) ) |
46 |
45
|
eleq2d |
⊢ ( 𝑢 = 𝑑 → ( 𝑐 ∈ ( 𝑓 ‘ 𝑢 ) ↔ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) ) |
47 |
44 46
|
anbi12d |
⊢ ( 𝑢 = 𝑑 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑢 ) ) ↔ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) ) ) |
48 |
40 41 43 47
|
opelopab |
⊢ ( 〈 𝑐 , 𝑑 〉 ∈ { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ↔ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) ) |
49 |
39 48
|
bitri |
⊢ ( 𝑐 { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } 𝑑 ↔ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) ) |
50 |
38 49
|
bitrdi |
⊢ ( 𝑡 = { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } → ( 𝑐 𝑡 𝑑 ↔ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) ) ) |
51 |
50
|
rabbidv |
⊢ ( 𝑡 = { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } → { 𝑑 ∈ 𝐴 ∣ 𝑐 𝑡 𝑑 } = { 𝑑 ∈ 𝐴 ∣ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) } ) |
52 |
51
|
mpteq2dv |
⊢ ( 𝑡 = { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } → ( 𝑐 ∈ 𝐵 ↦ { 𝑑 ∈ 𝐴 ∣ 𝑐 𝑡 𝑑 } ) = ( 𝑐 ∈ 𝐵 ↦ { 𝑑 ∈ 𝐴 ∣ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) } ) ) |
53 |
|
ibar |
⊢ ( 𝑑 ∈ 𝐴 → ( 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ↔ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) ) ) |
54 |
53
|
bicomd |
⊢ ( 𝑑 ∈ 𝐴 → ( ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) ↔ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) ) |
55 |
54
|
rabbiia |
⊢ { 𝑑 ∈ 𝐴 ∣ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) } = { 𝑑 ∈ 𝐴 ∣ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) } |
56 |
|
fveq2 |
⊢ ( 𝑑 = 𝑥 → ( 𝑓 ‘ 𝑑 ) = ( 𝑓 ‘ 𝑥 ) ) |
57 |
56
|
eleq2d |
⊢ ( 𝑑 = 𝑥 → ( 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ↔ 𝑐 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
58 |
57
|
cbvrabv |
⊢ { 𝑑 ∈ 𝐴 ∣ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) } = { 𝑥 ∈ 𝐴 ∣ 𝑐 ∈ ( 𝑓 ‘ 𝑥 ) } |
59 |
55 58
|
eqtri |
⊢ { 𝑑 ∈ 𝐴 ∣ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) } = { 𝑥 ∈ 𝐴 ∣ 𝑐 ∈ ( 𝑓 ‘ 𝑥 ) } |
60 |
59
|
mpteq2i |
⊢ ( 𝑐 ∈ 𝐵 ↦ { 𝑑 ∈ 𝐴 ∣ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) } ) = ( 𝑐 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑐 ∈ ( 𝑓 ‘ 𝑥 ) } ) |
61 |
|
eleq1w |
⊢ ( 𝑐 = 𝑦 → ( 𝑐 ∈ ( 𝑓 ‘ 𝑥 ) ↔ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
62 |
61
|
rabbidv |
⊢ ( 𝑐 = 𝑦 → { 𝑥 ∈ 𝐴 ∣ 𝑐 ∈ ( 𝑓 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) |
63 |
62
|
cbvmptv |
⊢ ( 𝑐 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑐 ∈ ( 𝑓 ‘ 𝑥 ) } ) = ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) |
64 |
60 63
|
eqtri |
⊢ ( 𝑐 ∈ 𝐵 ↦ { 𝑑 ∈ 𝐴 ∣ ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ ( 𝑓 ‘ 𝑑 ) ) } ) = ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) |
65 |
52 64
|
eqtrdi |
⊢ ( 𝑡 = { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } → ( 𝑐 ∈ 𝐵 ↦ { 𝑑 ∈ 𝐴 ∣ 𝑐 𝑡 𝑑 } ) = ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) ) |
66 |
23 24 37 65
|
fmptco |
⊢ ( 𝜑 → ( ( 𝐵 𝑅 𝐴 ) ∘ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) ) ) |
67 |
2 3
|
xpexd |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V ) |
68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → ( 𝐴 × 𝐵 ) ∈ V ) |
69 |
15
|
opabbidv |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) |
70 |
|
opabssxp |
⊢ { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵 ) ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ⊆ ( 𝐴 × 𝐵 ) |
71 |
69 70
|
eqsstrdi |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ⊆ ( 𝐴 × 𝐵 ) ) |
72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ⊆ ( 𝐴 × 𝐵 ) ) |
73 |
68 72
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
74 |
|
eqid |
⊢ ( 𝐴 𝑅 𝐵 ) = ( 𝐴 𝑅 𝐵 ) |
75 |
4 2 3 74
|
rfovcnvd |
⊢ ( 𝜑 → ◡ ( 𝐴 𝑅 𝐵 ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) ) |
76 |
5
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ◡ 𝑠 ) ) ) |
77 |
|
xpeq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 × 𝑏 ) = ( 𝐴 × 𝐵 ) ) |
78 |
77
|
pweqd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( 𝐴 × 𝐵 ) ) |
79 |
78
|
mpteq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑠 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ◡ 𝑠 ) = ( 𝑠 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ◡ 𝑠 ) ) |
80 |
79
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → ( 𝑠 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ◡ 𝑠 ) = ( 𝑠 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ◡ 𝑠 ) ) |
81 |
2
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
82 |
3
|
elexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
83 |
|
pwexg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → 𝒫 ( 𝐴 × 𝐵 ) ∈ V ) |
84 |
|
mptexg |
⊢ ( 𝒫 ( 𝐴 × 𝐵 ) ∈ V → ( 𝑠 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ◡ 𝑠 ) ∈ V ) |
85 |
67 83 84
|
3syl |
⊢ ( 𝜑 → ( 𝑠 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ◡ 𝑠 ) ∈ V ) |
86 |
76 80 81 82 85
|
ovmpod |
⊢ ( 𝜑 → ( 𝐴 𝐶 𝐵 ) = ( 𝑠 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ◡ 𝑠 ) ) |
87 |
|
cnveq |
⊢ ( 𝑠 = { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } → ◡ 𝑠 = ◡ { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) |
88 |
|
cnvopab |
⊢ ◡ { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } = { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } |
89 |
87 88
|
eqtrdi |
⊢ ( 𝑠 = { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } → ◡ 𝑠 = { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) |
90 |
73 75 86 89
|
fmptco |
⊢ ( 𝜑 → ( ( 𝐴 𝐶 𝐵 ) ∘ ◡ ( 𝐴 𝑅 𝐵 ) ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) ) |
91 |
90
|
coeq2d |
⊢ ( 𝜑 → ( ( 𝐵 𝑅 𝐴 ) ∘ ( ( 𝐴 𝐶 𝐵 ) ∘ ◡ ( 𝐴 𝑅 𝐵 ) ) ) = ( ( 𝐵 𝑅 𝐴 ) ∘ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑣 , 𝑢 〉 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) ) ) |
92 |
1 2 3
|
fsovd |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ ( 𝑦 ∈ 𝐵 ↦ { 𝑥 ∈ 𝐴 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ) ) ) |
93 |
66 91 92
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ) = ( ( 𝐵 𝑅 𝐴 ) ∘ ( ( 𝐴 𝐶 𝐵 ) ∘ ◡ ( 𝐴 𝑅 𝐵 ) ) ) ) |