| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rfovd.rf | ⊢ 𝑂  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ( 𝑥  ∈  𝑎  ↦  { 𝑦  ∈  𝑏  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 2 |  | rfovd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | rfovd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 4 | 1 | a1i | ⊢ ( 𝜑  →  𝑂  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ( 𝑥  ∈  𝑎  ↦  { 𝑦  ∈  𝑏  ∣  𝑥 𝑟 𝑦 } ) ) ) ) | 
						
							| 5 |  | xpeq12 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎  ×  𝑏 )  =  ( 𝐴  ×  𝐵 ) ) | 
						
							| 6 | 5 | pweqd | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝒫  ( 𝑎  ×  𝑏 )  =  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  𝑎  =  𝐴 ) | 
						
							| 8 |  | rabeq | ⊢ ( 𝑏  =  𝐵  →  { 𝑦  ∈  𝑏  ∣  𝑥 𝑟 𝑦 }  =  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  { 𝑦  ∈  𝑏  ∣  𝑥 𝑟 𝑦 }  =  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) | 
						
							| 10 | 7 9 | mpteq12dv | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑥  ∈  𝑎  ↦  { 𝑦  ∈  𝑏  ∣  𝑥 𝑟 𝑦 } )  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) | 
						
							| 11 | 6 10 | mpteq12dv | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ( 𝑥  ∈  𝑎  ↦  { 𝑦  ∈  𝑏  ∣  𝑥 𝑟 𝑦 } ) )  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 ) )  →  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ( 𝑥  ∈  𝑎  ↦  { 𝑦  ∈  𝑏  ∣  𝑥 𝑟 𝑦 } ) )  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 13 | 2 | elexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 14 | 3 | elexd | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 15 | 2 3 | xpexd | ⊢ ( 𝜑  →  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 16 |  | pwexg | ⊢ ( ( 𝐴  ×  𝐵 )  ∈  V  →  𝒫  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 17 |  | mptexg | ⊢ ( 𝒫  ( 𝐴  ×  𝐵 )  ∈  V  →  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  ∈  V ) | 
						
							| 18 | 15 16 17 | 3syl | ⊢ ( 𝜑  →  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  ∈  V ) | 
						
							| 19 | 4 12 13 14 18 | ovmpod | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵 )  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) ) |