Metamath Proof Explorer


Theorem rfovd

Description: Value of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses rfovd.rf 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥𝑎 ↦ { 𝑦𝑏𝑥 𝑟 𝑦 } ) ) )
rfovd.a ( 𝜑𝐴𝑉 )
rfovd.b ( 𝜑𝐵𝑊 )
Assertion rfovd ( 𝜑 → ( 𝐴 𝑂 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) ) )

Proof

Step Hyp Ref Expression
1 rfovd.rf 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥𝑎 ↦ { 𝑦𝑏𝑥 𝑟 𝑦 } ) ) )
2 rfovd.a ( 𝜑𝐴𝑉 )
3 rfovd.b ( 𝜑𝐵𝑊 )
4 1 a1i ( 𝜑𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥𝑎 ↦ { 𝑦𝑏𝑥 𝑟 𝑦 } ) ) ) )
5 xpeq12 ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → ( 𝑎 × 𝑏 ) = ( 𝐴 × 𝐵 ) )
6 5 pweqd ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( 𝐴 × 𝐵 ) )
7 simpl ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → 𝑎 = 𝐴 )
8 rabeq ( 𝑏 = 𝐵 → { 𝑦𝑏𝑥 𝑟 𝑦 } = { 𝑦𝐵𝑥 𝑟 𝑦 } )
9 8 adantl ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → { 𝑦𝑏𝑥 𝑟 𝑦 } = { 𝑦𝐵𝑥 𝑟 𝑦 } )
10 7 9 mpteq12dv ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → ( 𝑥𝑎 ↦ { 𝑦𝑏𝑥 𝑟 𝑦 } ) = ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) )
11 6 10 mpteq12dv ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥𝑎 ↦ { 𝑦𝑏𝑥 𝑟 𝑦 } ) ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) ) )
12 11 adantl ( ( 𝜑 ∧ ( 𝑎 = 𝐴𝑏 = 𝐵 ) ) → ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥𝑎 ↦ { 𝑦𝑏𝑥 𝑟 𝑦 } ) ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) ) )
13 2 elexd ( 𝜑𝐴 ∈ V )
14 3 elexd ( 𝜑𝐵 ∈ V )
15 2 3 xpexd ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V )
16 pwexg ( ( 𝐴 × 𝐵 ) ∈ V → 𝒫 ( 𝐴 × 𝐵 ) ∈ V )
17 mptexg ( 𝒫 ( 𝐴 × 𝐵 ) ∈ V → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) ) ∈ V )
18 15 16 17 3syl ( 𝜑 → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) ) ∈ V )
19 4 12 13 14 18 ovmpod ( 𝜑 → ( 𝐴 𝑂 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) ) )