Step |
Hyp |
Ref |
Expression |
1 |
|
rfovd.rf |
⊢ 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥 ∈ 𝑎 ↦ { 𝑦 ∈ 𝑏 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
2 |
|
rfovd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
rfovd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
4 |
1
|
a1i |
⊢ ( 𝜑 → 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥 ∈ 𝑎 ↦ { 𝑦 ∈ 𝑏 ∣ 𝑥 𝑟 𝑦 } ) ) ) ) |
5 |
|
xpeq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 × 𝑏 ) = ( 𝐴 × 𝐵 ) ) |
6 |
5
|
pweqd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → 𝒫 ( 𝑎 × 𝑏 ) = 𝒫 ( 𝐴 × 𝐵 ) ) |
7 |
|
simpl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → 𝑎 = 𝐴 ) |
8 |
|
rabeq |
⊢ ( 𝑏 = 𝐵 → { 𝑦 ∈ 𝑏 ∣ 𝑥 𝑟 𝑦 } = { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
9 |
8
|
adantl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → { 𝑦 ∈ 𝑏 ∣ 𝑥 𝑟 𝑦 } = { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
10 |
7 9
|
mpteq12dv |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ 𝑎 ↦ { 𝑦 ∈ 𝑏 ∣ 𝑥 𝑟 𝑦 } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
11 |
6 10
|
mpteq12dv |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥 ∈ 𝑎 ↦ { 𝑦 ∈ 𝑏 ∣ 𝑥 𝑟 𝑦 } ) ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥 ∈ 𝑎 ↦ { 𝑦 ∈ 𝑏 ∣ 𝑥 𝑟 𝑦 } ) ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
13 |
2
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
14 |
3
|
elexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
15 |
2 3
|
xpexd |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V ) |
16 |
|
pwexg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → 𝒫 ( 𝐴 × 𝐵 ) ∈ V ) |
17 |
|
mptexg |
⊢ ( 𝒫 ( 𝐴 × 𝐵 ) ∈ V → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∈ V ) |
18 |
15 16 17
|
3syl |
⊢ ( 𝜑 → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∈ V ) |
19 |
4 12 13 14 18
|
ovmpod |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |