Metamath Proof Explorer


Theorem rfovfvd

Description: Value of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B , and relation R . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses rfovd.rf 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥𝑎 ↦ { 𝑦𝑏𝑥 𝑟 𝑦 } ) ) )
rfovd.a ( 𝜑𝐴𝑉 )
rfovd.b ( 𝜑𝐵𝑊 )
rfovfvd.r ( 𝜑𝑅 ∈ 𝒫 ( 𝐴 × 𝐵 ) )
rfovfvd.f 𝐹 = ( 𝐴 𝑂 𝐵 )
Assertion rfovfvd ( 𝜑 → ( 𝐹𝑅 ) = ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑅 𝑦 } ) )

Proof

Step Hyp Ref Expression
1 rfovd.rf 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥𝑎 ↦ { 𝑦𝑏𝑥 𝑟 𝑦 } ) ) )
2 rfovd.a ( 𝜑𝐴𝑉 )
3 rfovd.b ( 𝜑𝐵𝑊 )
4 rfovfvd.r ( 𝜑𝑅 ∈ 𝒫 ( 𝐴 × 𝐵 ) )
5 rfovfvd.f 𝐹 = ( 𝐴 𝑂 𝐵 )
6 1 2 3 rfovd ( 𝜑 → ( 𝐴 𝑂 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) ) )
7 5 6 syl5eq ( 𝜑𝐹 = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) ) )
8 breq ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑦𝑥 𝑅 𝑦 ) )
9 8 rabbidv ( 𝑟 = 𝑅 → { 𝑦𝐵𝑥 𝑟 𝑦 } = { 𝑦𝐵𝑥 𝑅 𝑦 } )
10 9 mpteq2dv ( 𝑟 = 𝑅 → ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) = ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑅 𝑦 } ) )
11 10 adantl ( ( 𝜑𝑟 = 𝑅 ) → ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑟 𝑦 } ) = ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑅 𝑦 } ) )
12 2 mptexd ( 𝜑 → ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑅 𝑦 } ) ∈ V )
13 7 11 4 12 fvmptd ( 𝜑 → ( 𝐹𝑅 ) = ( 𝑥𝐴 ↦ { 𝑦𝐵𝑥 𝑅 𝑦 } ) )