Metamath Proof Explorer


Theorem rfovfvd

Description: Value of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B , and relation R . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses rfovd.rf
|- O = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) )
rfovd.a
|- ( ph -> A e. V )
rfovd.b
|- ( ph -> B e. W )
rfovfvd.r
|- ( ph -> R e. ~P ( A X. B ) )
rfovfvd.f
|- F = ( A O B )
Assertion rfovfvd
|- ( ph -> ( F ` R ) = ( x e. A |-> { y e. B | x R y } ) )

Proof

Step Hyp Ref Expression
1 rfovd.rf
 |-  O = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) )
2 rfovd.a
 |-  ( ph -> A e. V )
3 rfovd.b
 |-  ( ph -> B e. W )
4 rfovfvd.r
 |-  ( ph -> R e. ~P ( A X. B ) )
5 rfovfvd.f
 |-  F = ( A O B )
6 1 2 3 rfovd
 |-  ( ph -> ( A O B ) = ( r e. ~P ( A X. B ) |-> ( x e. A |-> { y e. B | x r y } ) ) )
7 5 6 eqtrid
 |-  ( ph -> F = ( r e. ~P ( A X. B ) |-> ( x e. A |-> { y e. B | x r y } ) ) )
8 breq
 |-  ( r = R -> ( x r y <-> x R y ) )
9 8 rabbidv
 |-  ( r = R -> { y e. B | x r y } = { y e. B | x R y } )
10 9 mpteq2dv
 |-  ( r = R -> ( x e. A |-> { y e. B | x r y } ) = ( x e. A |-> { y e. B | x R y } ) )
11 10 adantl
 |-  ( ( ph /\ r = R ) -> ( x e. A |-> { y e. B | x r y } ) = ( x e. A |-> { y e. B | x R y } ) )
12 2 mptexd
 |-  ( ph -> ( x e. A |-> { y e. B | x R y } ) e. _V )
13 7 11 4 12 fvmptd
 |-  ( ph -> ( F ` R ) = ( x e. A |-> { y e. B | x R y } ) )