Metamath Proof Explorer


Theorem rfovd

Description: Value of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses rfovd.rf
|- O = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) )
rfovd.a
|- ( ph -> A e. V )
rfovd.b
|- ( ph -> B e. W )
Assertion rfovd
|- ( ph -> ( A O B ) = ( r e. ~P ( A X. B ) |-> ( x e. A |-> { y e. B | x r y } ) ) )

Proof

Step Hyp Ref Expression
1 rfovd.rf
 |-  O = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) )
2 rfovd.a
 |-  ( ph -> A e. V )
3 rfovd.b
 |-  ( ph -> B e. W )
4 1 a1i
 |-  ( ph -> O = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) ) )
5 xpeq12
 |-  ( ( a = A /\ b = B ) -> ( a X. b ) = ( A X. B ) )
6 5 pweqd
 |-  ( ( a = A /\ b = B ) -> ~P ( a X. b ) = ~P ( A X. B ) )
7 simpl
 |-  ( ( a = A /\ b = B ) -> a = A )
8 rabeq
 |-  ( b = B -> { y e. b | x r y } = { y e. B | x r y } )
9 8 adantl
 |-  ( ( a = A /\ b = B ) -> { y e. b | x r y } = { y e. B | x r y } )
10 7 9 mpteq12dv
 |-  ( ( a = A /\ b = B ) -> ( x e. a |-> { y e. b | x r y } ) = ( x e. A |-> { y e. B | x r y } ) )
11 6 10 mpteq12dv
 |-  ( ( a = A /\ b = B ) -> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) = ( r e. ~P ( A X. B ) |-> ( x e. A |-> { y e. B | x r y } ) ) )
12 11 adantl
 |-  ( ( ph /\ ( a = A /\ b = B ) ) -> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) = ( r e. ~P ( A X. B ) |-> ( x e. A |-> { y e. B | x r y } ) ) )
13 2 elexd
 |-  ( ph -> A e. _V )
14 3 elexd
 |-  ( ph -> B e. _V )
15 2 3 xpexd
 |-  ( ph -> ( A X. B ) e. _V )
16 pwexg
 |-  ( ( A X. B ) e. _V -> ~P ( A X. B ) e. _V )
17 mptexg
 |-  ( ~P ( A X. B ) e. _V -> ( r e. ~P ( A X. B ) |-> ( x e. A |-> { y e. B | x r y } ) ) e. _V )
18 15 16 17 3syl
 |-  ( ph -> ( r e. ~P ( A X. B ) |-> ( x e. A |-> { y e. B | x r y } ) ) e. _V )
19 4 12 13 14 18 ovmpod
 |-  ( ph -> ( A O B ) = ( r e. ~P ( A X. B ) |-> ( x e. A |-> { y e. B | x r y } ) ) )