Metamath Proof Explorer


Theorem rfovd

Description: Value of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses rfovd.rf O = a V , b V r 𝒫 a × b x a y b | x r y
rfovd.a φ A V
rfovd.b φ B W
Assertion rfovd φ A O B = r 𝒫 A × B x A y B | x r y

Proof

Step Hyp Ref Expression
1 rfovd.rf O = a V , b V r 𝒫 a × b x a y b | x r y
2 rfovd.a φ A V
3 rfovd.b φ B W
4 1 a1i φ O = a V , b V r 𝒫 a × b x a y b | x r y
5 xpeq12 a = A b = B a × b = A × B
6 5 pweqd a = A b = B 𝒫 a × b = 𝒫 A × B
7 simpl a = A b = B a = A
8 rabeq b = B y b | x r y = y B | x r y
9 8 adantl a = A b = B y b | x r y = y B | x r y
10 7 9 mpteq12dv a = A b = B x a y b | x r y = x A y B | x r y
11 6 10 mpteq12dv a = A b = B r 𝒫 a × b x a y b | x r y = r 𝒫 A × B x A y B | x r y
12 11 adantl φ a = A b = B r 𝒫 a × b x a y b | x r y = r 𝒫 A × B x A y B | x r y
13 2 elexd φ A V
14 3 elexd φ B V
15 2 3 xpexd φ A × B V
16 pwexg A × B V 𝒫 A × B V
17 mptexg 𝒫 A × B V r 𝒫 A × B x A y B | x r y V
18 15 16 17 3syl φ r 𝒫 A × B x A y B | x r y V
19 4 12 13 14 18 ovmpod φ A O B = r 𝒫 A × B x A y B | x r y