Step |
Hyp |
Ref |
Expression |
1 |
|
rfovd.rf |
|- O = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) ) |
2 |
|
rfovd.a |
|- ( ph -> A e. V ) |
3 |
|
rfovd.b |
|- ( ph -> B e. W ) |
4 |
|
rfovfvd.r |
|- ( ph -> R e. ~P ( A X. B ) ) |
5 |
|
rfovfvd.f |
|- F = ( A O B ) |
6 |
|
rfovfvfvd.x |
|- ( ph -> X e. A ) |
7 |
|
rfovfvfvd.g |
|- G = ( F ` R ) |
8 |
1 2 3 4 5
|
rfovfvd |
|- ( ph -> ( F ` R ) = ( x e. A |-> { y e. B | x R y } ) ) |
9 |
7 8
|
eqtrid |
|- ( ph -> G = ( x e. A |-> { y e. B | x R y } ) ) |
10 |
|
breq1 |
|- ( x = X -> ( x R y <-> X R y ) ) |
11 |
10
|
rabbidv |
|- ( x = X -> { y e. B | x R y } = { y e. B | X R y } ) |
12 |
11
|
adantl |
|- ( ( ph /\ x = X ) -> { y e. B | x R y } = { y e. B | X R y } ) |
13 |
|
rabexg |
|- ( B e. W -> { y e. B | X R y } e. _V ) |
14 |
3 13
|
syl |
|- ( ph -> { y e. B | X R y } e. _V ) |
15 |
9 12 6 14
|
fvmptd |
|- ( ph -> ( G ` X ) = { y e. B | X R y } ) |