| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rfovd.rf |  |-  O = ( a e. _V , b e. _V |-> ( r e. ~P ( a X. b ) |-> ( x e. a |-> { y e. b | x r y } ) ) ) | 
						
							| 2 |  | rfovd.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | rfovd.b |  |-  ( ph -> B e. W ) | 
						
							| 4 |  | rfovfvd.r |  |-  ( ph -> R e. ~P ( A X. B ) ) | 
						
							| 5 |  | rfovfvd.f |  |-  F = ( A O B ) | 
						
							| 6 |  | rfovfvfvd.x |  |-  ( ph -> X e. A ) | 
						
							| 7 |  | rfovfvfvd.g |  |-  G = ( F ` R ) | 
						
							| 8 | 1 2 3 4 5 | rfovfvd |  |-  ( ph -> ( F ` R ) = ( x e. A |-> { y e. B | x R y } ) ) | 
						
							| 9 | 7 8 | eqtrid |  |-  ( ph -> G = ( x e. A |-> { y e. B | x R y } ) ) | 
						
							| 10 |  | breq1 |  |-  ( x = X -> ( x R y <-> X R y ) ) | 
						
							| 11 | 10 | rabbidv |  |-  ( x = X -> { y e. B | x R y } = { y e. B | X R y } ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ x = X ) -> { y e. B | x R y } = { y e. B | X R y } ) | 
						
							| 13 |  | rabexg |  |-  ( B e. W -> { y e. B | X R y } e. _V ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> { y e. B | X R y } e. _V ) | 
						
							| 15 | 9 12 6 14 | fvmptd |  |-  ( ph -> ( G ` X ) = { y e. B | X R y } ) |