Metamath Proof Explorer


Theorem rfovfvfvd

Description: Value of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B , relation R , and left element X . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses rfovd.rf O = a V , b V r 𝒫 a × b x a y b | x r y
rfovd.a φ A V
rfovd.b φ B W
rfovfvd.r φ R 𝒫 A × B
rfovfvd.f F = A O B
rfovfvfvd.x φ X A
rfovfvfvd.g G = F R
Assertion rfovfvfvd φ G X = y B | X R y

Proof

Step Hyp Ref Expression
1 rfovd.rf O = a V , b V r 𝒫 a × b x a y b | x r y
2 rfovd.a φ A V
3 rfovd.b φ B W
4 rfovfvd.r φ R 𝒫 A × B
5 rfovfvd.f F = A O B
6 rfovfvfvd.x φ X A
7 rfovfvfvd.g G = F R
8 1 2 3 4 5 rfovfvd φ F R = x A y B | x R y
9 7 8 syl5eq φ G = x A y B | x R y
10 breq1 x = X x R y X R y
11 10 rabbidv x = X y B | x R y = y B | X R y
12 11 adantl φ x = X y B | x R y = y B | X R y
13 rabexg B W y B | X R y V
14 3 13 syl φ y B | X R y V
15 9 12 6 14 fvmptd φ G X = y B | X R y