Metamath Proof Explorer


Theorem rfovcnvf1od

Description: Properties of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B . (Contributed by RP, 27-Apr-2021)

Ref Expression
Hypotheses rfovd.rf O=aV,bVr𝒫a×bxayb|xry
rfovd.a φAV
rfovd.b φBW
rfovcnvf1od.f F=AOB
Assertion rfovcnvf1od φF:𝒫A×B1-1 onto𝒫BAF-1=f𝒫BAxy|xAyfx

Proof

Step Hyp Ref Expression
1 rfovd.rf O=aV,bVr𝒫a×bxayb|xry
2 rfovd.a φAV
3 rfovd.b φBW
4 rfovcnvf1od.f F=AOB
5 eqid r𝒫A×BxAyB|xry=r𝒫A×BxAyB|xry
6 ssrab2 yB|xryB
7 6 a1i φyB|xryB
8 3 7 sselpwd φyB|xry𝒫B
9 8 adantr φxAyB|xry𝒫B
10 9 fmpttd φxAyB|xry:A𝒫B
11 3 pwexd φ𝒫BV
12 11 2 elmapd φxAyB|xry𝒫BAxAyB|xry:A𝒫B
13 10 12 mpbird φxAyB|xry𝒫BA
14 13 adantr φr𝒫A×BxAyB|xry𝒫BA
15 2 3 xpexd φA×BV
16 15 adantr φf𝒫BAA×BV
17 11 2 elmapd φf𝒫BAf:A𝒫B
18 17 biimpa φf𝒫BAf:A𝒫B
19 18 ffvelcdmda φf𝒫BAxAfx𝒫B
20 19 ex φf𝒫BAxAfx𝒫B
21 elpwi fx𝒫BfxB
22 21 sseld fx𝒫ByfxyB
23 20 22 syl6 φf𝒫BAxAyfxyB
24 23 imdistand φf𝒫BAxAyfxxAyB
25 trud xAyfx
26 24 25 jca2 φf𝒫BAxAyfxxAyB
27 26 ssopab2dv φf𝒫BAxy|xAyfxxy|xAyB
28 opabssxp xy|xAyBA×B
29 27 28 sstrdi φf𝒫BAxy|xAyfxA×B
30 16 29 sselpwd φf𝒫BAxy|xAyfx𝒫A×B
31 simplrr φr𝒫A×Bf𝒫BAr=xy|xAyfxf𝒫BA
32 elmapfn f𝒫BAfFnA
33 31 32 syl φr𝒫A×Bf𝒫BAr=xy|xAyfxfFnA
34 3 ad2antrr φr𝒫A×Bf𝒫BAr=xy|xAyfxBW
35 rabexg BWyB|xryV
36 35 ralrimivw BWxAyB|xryV
37 nfcv _xA
38 37 fnmptf xAyB|xryVxAyB|xryFnA
39 34 36 38 3syl φr𝒫A×Bf𝒫BAr=xy|xAyfxxAyB|xryFnA
40 dfin5 Bfu=bB|bfu
41 simpllr φr𝒫A×Bf𝒫BAr=xy|xAyfxuAr𝒫A×Bf𝒫BA
42 elmapi f𝒫BAf:A𝒫B
43 41 42 simpl2im φr𝒫A×Bf𝒫BAr=xy|xAyfxuAf:A𝒫B
44 simpr φr𝒫A×Bf𝒫BAr=xy|xAyfxuAuA
45 43 44 ffvelcdmd φr𝒫A×Bf𝒫BAr=xy|xAyfxuAfu𝒫B
46 45 elpwid φr𝒫A×Bf𝒫BAr=xy|xAyfxuAfuB
47 sseqin2 fuBBfu=fu
48 46 47 sylib φr𝒫A×Bf𝒫BAr=xy|xAyfxuABfu=fu
49 ibar uAbfuuAbfu
50 49 rabbidv uAbB|bfu=bB|uAbfu
51 50 adantl φr𝒫A×Bf𝒫BAr=xy|xAyfxuAbB|bfu=bB|uAbfu
52 40 48 51 3eqtr3a φr𝒫A×Bf𝒫BAr=xy|xAyfxuAfu=bB|uAbfu
53 breq2 y=bxryxrb
54 53 cbvrabv yB|xry=bB|xrb
55 breq1 x=axrbarb
56 df-br arbabr
57 55 56 bitrdi x=axrbabr
58 57 rabbidv x=abB|xrb=bB|abr
59 54 58 eqtrid x=ayB|xry=bB|abr
60 59 cbvmptv xAyB|xry=aAbB|abr
61 simpr φr𝒫A×Bf𝒫BAr=xy|xAyfxuAa=ua=u
62 61 opeq1d φr𝒫A×Bf𝒫BAr=xy|xAyfxuAa=uab=ub
63 simpllr φr𝒫A×Bf𝒫BAr=xy|xAyfxuAa=ur=xy|xAyfx
64 62 63 eleq12d φr𝒫A×Bf𝒫BAr=xy|xAyfxuAa=uabrubxy|xAyfx
65 vex uV
66 vex bV
67 simpl x=uy=bx=u
68 67 eleq1d x=uy=bxAuA
69 simpr x=uy=by=b
70 67 fveq2d x=uy=bfx=fu
71 69 70 eleq12d x=uy=byfxbfu
72 68 71 anbi12d x=uy=bxAyfxuAbfu
73 65 66 72 opelopaba ubxy|xAyfxuAbfu
74 64 73 bitrdi φr𝒫A×Bf𝒫BAr=xy|xAyfxuAa=uabruAbfu
75 74 rabbidv φr𝒫A×Bf𝒫BAr=xy|xAyfxuAa=ubB|abr=bB|uAbfu
76 3 ad3antrrr φr𝒫A×Bf𝒫BAr=xy|xAyfxuABW
77 rabexg BWbB|uAbfuV
78 76 77 syl φr𝒫A×Bf𝒫BAr=xy|xAyfxuAbB|uAbfuV
79 60 75 44 78 fvmptd2 φr𝒫A×Bf𝒫BAr=xy|xAyfxuAxAyB|xryu=bB|uAbfu
80 52 79 eqtr4d φr𝒫A×Bf𝒫BAr=xy|xAyfxuAfu=xAyB|xryu
81 33 39 80 eqfnfvd φr𝒫A×Bf𝒫BAr=xy|xAyfxf=xAyB|xry
82 simplrl φr𝒫A×Bf𝒫BAf=xAyB|xryr𝒫A×B
83 82 elpwid φr𝒫A×Bf𝒫BAf=xAyB|xryrA×B
84 xpss A×BV×V
85 83 84 sstrdi φr𝒫A×Bf𝒫BAf=xAyB|xryrV×V
86 df-rel RelrrV×V
87 85 86 sylibr φr𝒫A×Bf𝒫BAf=xAyB|xryRelr
88 relopabv Relxy|xAyfx
89 88 a1i φr𝒫A×Bf𝒫BAf=xAyB|xryRelxy|xAyfx
90 simpl r𝒫A×Bf𝒫BAr𝒫A×B
91 3 90 anim12i φr𝒫A×Bf𝒫BABWr𝒫A×B
92 91 anim1i φr𝒫A×Bf𝒫BAf=xAyB|xryBWr𝒫A×Bf=xAyB|xry
93 vex vV
94 simpl x=uy=vx=u
95 94 eleq1d x=uy=vxAuA
96 simpr x=uy=vy=v
97 94 fveq2d x=uy=vfx=fu
98 96 97 eleq12d x=uy=vyfxvfu
99 95 98 anbi12d x=uy=vxAyfxuAvfu
100 65 93 99 opelopaba uvxy|xAyfxuAvfu
101 breq2 b=vurburv
102 df-br urvuvr
103 101 102 bitrdi b=vurbuvr
104 103 elrab vbB|urbvBuvr
105 104 anbi2i uAvbB|urbuAvBuvr
106 105 a1i BWr𝒫A×Bf=xAyB|xryuAvbB|urbuAvBuvr
107 simplr BWr𝒫A×Bf=xAyB|xryuAf=xAyB|xry
108 breq1 x=axryary
109 108 rabbidv x=ayB|xry=yB|ary
110 breq2 y=baryarb
111 110 cbvrabv yB|ary=bB|arb
112 109 111 eqtrdi x=ayB|xry=bB|arb
113 112 cbvmptv xAyB|xry=aAbB|arb
114 107 113 eqtrdi BWr𝒫A×Bf=xAyB|xryuAf=aAbB|arb
115 breq1 a=uarburb
116 115 rabbidv a=ubB|arb=bB|urb
117 116 adantl BWr𝒫A×Bf=xAyB|xryuAa=ubB|arb=bB|urb
118 simpr BWr𝒫A×Bf=xAyB|xryuAuA
119 rabexg BWbB|urbV
120 119 ad3antrrr BWr𝒫A×Bf=xAyB|xryuAbB|urbV
121 114 117 118 120 fvmptd BWr𝒫A×Bf=xAyB|xryuAfu=bB|urb
122 121 eleq2d BWr𝒫A×Bf=xAyB|xryuAvfuvbB|urb
123 122 pm5.32da BWr𝒫A×Bf=xAyB|xryuAvfuuAvbB|urb
124 simplr BWr𝒫A×Bf=xAyB|xryr𝒫A×B
125 124 elpwid BWr𝒫A×Bf=xAyB|xryrA×B
126 65 93 opeldm uvrudomr
127 dmss rA×BdomrdomA×B
128 dmxpss domA×BA
129 127 128 sstrdi rA×BdomrA
130 129 sseld rA×BudomruA
131 126 130 syl5 rA×BuvruA
132 131 pm4.71rd rA×BuvruAuvr
133 65 93 opelrn uvrvranr
134 rnss rA×BranrranA×B
135 rnxpss ranA×BB
136 134 135 sstrdi rA×BranrB
137 136 sseld rA×BvranrvB
138 133 137 syl5 rA×BuvrvB
139 138 pm4.71rd rA×BuvrvBuvr
140 139 anbi2d rA×BuAuvruAvBuvr
141 132 140 bitrd rA×BuvruAvBuvr
142 125 141 syl BWr𝒫A×Bf=xAyB|xryuvruAvBuvr
143 106 123 142 3bitr4d BWr𝒫A×Bf=xAyB|xryuAvfuuvr
144 100 143 bitr2id BWr𝒫A×Bf=xAyB|xryuvruvxy|xAyfx
145 144 eqrelrdv2 RelrRelxy|xAyfxBWr𝒫A×Bf=xAyB|xryr=xy|xAyfx
146 87 89 92 145 syl21anc φr𝒫A×Bf𝒫BAf=xAyB|xryr=xy|xAyfx
147 81 146 impbida φr𝒫A×Bf𝒫BAr=xy|xAyfxf=xAyB|xry
148 5 14 30 147 f1ocnv2d φr𝒫A×BxAyB|xry:𝒫A×B1-1 onto𝒫BAr𝒫A×BxAyB|xry-1=f𝒫BAxy|xAyfx
149 1 2 3 rfovd φAOB=r𝒫A×BxAyB|xry
150 4 149 eqtrid φF=r𝒫A×BxAyB|xry
151 f1oeq1 F=r𝒫A×BxAyB|xryF:𝒫A×B1-1 onto𝒫BAr𝒫A×BxAyB|xry:𝒫A×B1-1 onto𝒫BA
152 cnveq F=r𝒫A×BxAyB|xryF-1=r𝒫A×BxAyB|xry-1
153 152 eqeq1d F=r𝒫A×BxAyB|xryF-1=f𝒫BAxy|xAyfxr𝒫A×BxAyB|xry-1=f𝒫BAxy|xAyfx
154 151 153 anbi12d F=r𝒫A×BxAyB|xryF:𝒫A×B1-1 onto𝒫BAF-1=f𝒫BAxy|xAyfxr𝒫A×BxAyB|xry:𝒫A×B1-1 onto𝒫BAr𝒫A×BxAyB|xry-1=f𝒫BAxy|xAyfx
155 150 154 syl φF:𝒫A×B1-1 onto𝒫BAF-1=f𝒫BAxy|xAyfxr𝒫A×BxAyB|xry:𝒫A×B1-1 onto𝒫BAr𝒫A×BxAyB|xry-1=f𝒫BAxy|xAyfx
156 148 155 mpbird φF:𝒫A×B1-1 onto𝒫BAF-1=f𝒫BAxy|xAyfx