| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rfovd.rf | ⊢ 𝑂  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ( 𝑥  ∈  𝑎  ↦  { 𝑦  ∈  𝑏  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 2 |  | rfovd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | rfovd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 4 |  | rfovcnvf1od.f | ⊢ 𝐹  =  ( 𝐴 𝑂 𝐵 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  ⊆  𝐵 | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  ⊆  𝐵 ) | 
						
							| 8 | 3 7 | sselpwd | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  ∈  𝒫  𝐵 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  ∈  𝒫  𝐵 ) | 
						
							| 10 | 9 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) : 𝐴 ⟶ 𝒫  𝐵 ) | 
						
							| 11 | 3 | pwexd | ⊢ ( 𝜑  →  𝒫  𝐵  ∈  V ) | 
						
							| 12 | 11 2 | elmapd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } )  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↔  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) : 𝐴 ⟶ 𝒫  𝐵 ) ) | 
						
							| 13 | 10 12 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } )  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  →  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } )  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) | 
						
							| 15 | 2 3 | xpexd | ⊢ ( 𝜑  →  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 17 | 11 2 | elmapd | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↔  𝑓 : 𝐴 ⟶ 𝒫  𝐵 ) ) | 
						
							| 18 | 17 | biimpa | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  𝑓 : 𝐴 ⟶ 𝒫  𝐵 ) | 
						
							| 19 | 18 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ∈  𝒫  𝐵 ) | 
						
							| 20 | 19 | ex | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  ( 𝑥  ∈  𝐴  →  ( 𝑓 ‘ 𝑥 )  ∈  𝒫  𝐵 ) ) | 
						
							| 21 |  | elpwi | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  𝒫  𝐵  →  ( 𝑓 ‘ 𝑥 )  ⊆  𝐵 ) | 
						
							| 22 | 21 | sseld | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  𝒫  𝐵  →  ( 𝑦  ∈  ( 𝑓 ‘ 𝑥 )  →  𝑦  ∈  𝐵 ) ) | 
						
							| 23 | 20 22 | syl6 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  ( 𝑓 ‘ 𝑥 )  →  𝑦  ∈  𝐵 ) ) ) | 
						
							| 24 | 23 | imdistand | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) )  →  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 25 |  | trud | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) )  →  ⊤ ) | 
						
							| 26 | 24 25 | jca2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ⊤ ) ) ) | 
						
							| 27 | 26 | ssopab2dv | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) }  ⊆  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ⊤ ) } ) | 
						
							| 28 |  | opabssxp | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ⊤ ) }  ⊆  ( 𝐴  ×  𝐵 ) | 
						
							| 29 | 27 28 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) }  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 30 | 16 29 | sselpwd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) }  ∈  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 31 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  →  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) | 
						
							| 32 |  | elmapfn | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  𝑓  Fn  𝐴 ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  →  𝑓  Fn  𝐴 ) | 
						
							| 34 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  →  𝐵  ∈  𝑊 ) | 
						
							| 35 |  | rabexg | ⊢ ( 𝐵  ∈  𝑊  →  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  ∈  V ) | 
						
							| 36 | 35 | ralrimivw | ⊢ ( 𝐵  ∈  𝑊  →  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  ∈  V ) | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 38 | 37 | fnmptf | ⊢ ( ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  ∈  V  →  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } )  Fn  𝐴 ) | 
						
							| 39 | 34 36 38 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  →  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } )  Fn  𝐴 ) | 
						
							| 40 |  | dfin5 | ⊢ ( 𝐵  ∩  ( 𝑓 ‘ 𝑢 ) )  =  { 𝑏  ∈  𝐵  ∣  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) } | 
						
							| 41 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) ) | 
						
							| 42 |  | elmapi | ⊢ ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  𝑓 : 𝐴 ⟶ 𝒫  𝐵 ) | 
						
							| 43 | 41 42 | simpl2im | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  𝑓 : 𝐴 ⟶ 𝒫  𝐵 ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  𝑢  ∈  𝐴 ) | 
						
							| 45 | 43 44 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑢 )  ∈  𝒫  𝐵 ) | 
						
							| 46 | 45 | elpwid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑢 )  ⊆  𝐵 ) | 
						
							| 47 |  | sseqin2 | ⊢ ( ( 𝑓 ‘ 𝑢 )  ⊆  𝐵  ↔  ( 𝐵  ∩  ( 𝑓 ‘ 𝑢 ) )  =  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 48 | 46 47 | sylib | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  ( 𝐵  ∩  ( 𝑓 ‘ 𝑢 ) )  =  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 49 |  | ibar | ⊢ ( 𝑢  ∈  𝐴  →  ( 𝑏  ∈  ( 𝑓 ‘ 𝑢 )  ↔  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) ) ) | 
						
							| 50 | 49 | rabbidv | ⊢ ( 𝑢  ∈  𝐴  →  { 𝑏  ∈  𝐵  ∣  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) }  =  { 𝑏  ∈  𝐵  ∣  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  { 𝑏  ∈  𝐵  ∣  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) }  =  { 𝑏  ∈  𝐵  ∣  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) | 
						
							| 52 | 40 48 51 | 3eqtr3a | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑢 )  =  { 𝑏  ∈  𝐵  ∣  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) | 
						
							| 53 |  | breq2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑥 𝑟 𝑦  ↔  𝑥 𝑟 𝑏 ) ) | 
						
							| 54 | 53 | cbvrabv | ⊢ { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  =  { 𝑏  ∈  𝐵  ∣  𝑥 𝑟 𝑏 } | 
						
							| 55 |  | breq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥 𝑟 𝑏  ↔  𝑎 𝑟 𝑏 ) ) | 
						
							| 56 |  | df-br | ⊢ ( 𝑎 𝑟 𝑏  ↔  〈 𝑎 ,  𝑏 〉  ∈  𝑟 ) | 
						
							| 57 | 55 56 | bitrdi | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥 𝑟 𝑏  ↔  〈 𝑎 ,  𝑏 〉  ∈  𝑟 ) ) | 
						
							| 58 | 57 | rabbidv | ⊢ ( 𝑥  =  𝑎  →  { 𝑏  ∈  𝐵  ∣  𝑥 𝑟 𝑏 }  =  { 𝑏  ∈  𝐵  ∣  〈 𝑎 ,  𝑏 〉  ∈  𝑟 } ) | 
						
							| 59 | 54 58 | eqtrid | ⊢ ( 𝑥  =  𝑎  →  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  =  { 𝑏  ∈  𝐵  ∣  〈 𝑎 ,  𝑏 〉  ∈  𝑟 } ) | 
						
							| 60 | 59 | cbvmptv | ⊢ ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } )  =  ( 𝑎  ∈  𝐴  ↦  { 𝑏  ∈  𝐵  ∣  〈 𝑎 ,  𝑏 〉  ∈  𝑟 } ) | 
						
							| 61 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  ∧  𝑎  =  𝑢 )  →  𝑎  =  𝑢 ) | 
						
							| 62 | 61 | opeq1d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  ∧  𝑎  =  𝑢 )  →  〈 𝑎 ,  𝑏 〉  =  〈 𝑢 ,  𝑏 〉 ) | 
						
							| 63 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  ∧  𝑎  =  𝑢 )  →  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) | 
						
							| 64 | 62 63 | eleq12d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  ∧  𝑎  =  𝑢 )  →  ( 〈 𝑎 ,  𝑏 〉  ∈  𝑟  ↔  〈 𝑢 ,  𝑏 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) ) | 
						
							| 65 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 66 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 67 |  | simpl | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑏 )  →  𝑥  =  𝑢 ) | 
						
							| 68 | 67 | eleq1d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑏 )  →  ( 𝑥  ∈  𝐴  ↔  𝑢  ∈  𝐴 ) ) | 
						
							| 69 |  | simpr | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑏 )  →  𝑦  =  𝑏 ) | 
						
							| 70 | 67 | fveq2d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑏 )  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 71 | 69 70 | eleq12d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑏 )  →  ( 𝑦  ∈  ( 𝑓 ‘ 𝑥 )  ↔  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 72 | 68 71 | anbi12d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑏 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) )  ↔  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) ) ) | 
						
							| 73 | 65 66 72 | opelopaba | ⊢ ( 〈 𝑢 ,  𝑏 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) }  ↔  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 74 | 64 73 | bitrdi | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  ∧  𝑎  =  𝑢 )  →  ( 〈 𝑎 ,  𝑏 〉  ∈  𝑟  ↔  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) ) ) | 
						
							| 75 | 74 | rabbidv | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  ∧  𝑎  =  𝑢 )  →  { 𝑏  ∈  𝐵  ∣  〈 𝑎 ,  𝑏 〉  ∈  𝑟 }  =  { 𝑏  ∈  𝐵  ∣  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) | 
						
							| 76 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  𝐵  ∈  𝑊 ) | 
						
							| 77 |  | rabexg | ⊢ ( 𝐵  ∈  𝑊  →  { 𝑏  ∈  𝐵  ∣  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ∈  V ) | 
						
							| 78 | 76 77 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  { 𝑏  ∈  𝐵  ∣  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) }  ∈  V ) | 
						
							| 79 | 60 75 44 78 | fvmptd2 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ‘ 𝑢 )  =  { 𝑏  ∈  𝐵  ∣  ( 𝑢  ∈  𝐴  ∧  𝑏  ∈  ( 𝑓 ‘ 𝑢 ) ) } ) | 
						
							| 80 | 52 79 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑢 )  =  ( ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ‘ 𝑢 ) ) | 
						
							| 81 | 33 39 80 | eqfnfvd | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  →  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) | 
						
							| 82 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 83 | 82 | elpwid | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  𝑟  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 84 |  | xpss | ⊢ ( 𝐴  ×  𝐵 )  ⊆  ( V  ×  V ) | 
						
							| 85 | 83 84 | sstrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  𝑟  ⊆  ( V  ×  V ) ) | 
						
							| 86 |  | df-rel | ⊢ ( Rel  𝑟  ↔  𝑟  ⊆  ( V  ×  V ) ) | 
						
							| 87 | 85 86 | sylibr | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  Rel  𝑟 ) | 
						
							| 88 |  | relopabv | ⊢ Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } | 
						
							| 89 | 88 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) | 
						
							| 90 |  | simpl | ⊢ ( ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) )  →  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 91 | 3 90 | anim12i | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  →  ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 92 | 91 | anim1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 93 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 94 |  | simpl | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  𝑥  =  𝑢 ) | 
						
							| 95 | 94 | eleq1d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( 𝑥  ∈  𝐴  ↔  𝑢  ∈  𝐴 ) ) | 
						
							| 96 |  | simpr | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  𝑦  =  𝑣 ) | 
						
							| 97 | 94 | fveq2d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑓 ‘ 𝑢 ) ) | 
						
							| 98 | 96 97 | eleq12d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( 𝑦  ∈  ( 𝑓 ‘ 𝑥 )  ↔  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 99 | 95 98 | anbi12d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) )  ↔  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) ) ) | 
						
							| 100 | 65 93 99 | opelopaba | ⊢ ( 〈 𝑢 ,  𝑣 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) }  ↔  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) ) ) | 
						
							| 101 |  | breq2 | ⊢ ( 𝑏  =  𝑣  →  ( 𝑢 𝑟 𝑏  ↔  𝑢 𝑟 𝑣 ) ) | 
						
							| 102 |  | df-br | ⊢ ( 𝑢 𝑟 𝑣  ↔  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) | 
						
							| 103 | 101 102 | bitrdi | ⊢ ( 𝑏  =  𝑣  →  ( 𝑢 𝑟 𝑏  ↔  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) ) | 
						
							| 104 | 103 | elrab | ⊢ ( 𝑣  ∈  { 𝑏  ∈  𝐵  ∣  𝑢 𝑟 𝑏 }  ↔  ( 𝑣  ∈  𝐵  ∧  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) ) | 
						
							| 105 | 104 | anbi2i | ⊢ ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  { 𝑏  ∈  𝐵  ∣  𝑢 𝑟 𝑏 } )  ↔  ( 𝑢  ∈  𝐴  ∧  ( 𝑣  ∈  𝐵  ∧  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) ) ) | 
						
							| 106 | 105 | a1i | ⊢ ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  { 𝑏  ∈  𝐵  ∣  𝑢 𝑟 𝑏 } )  ↔  ( 𝑢  ∈  𝐴  ∧  ( 𝑣  ∈  𝐵  ∧  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) ) ) ) | 
						
							| 107 |  | simplr | ⊢ ( ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  ∧  𝑢  ∈  𝐴 )  →  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) | 
						
							| 108 |  | breq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥 𝑟 𝑦  ↔  𝑎 𝑟 𝑦 ) ) | 
						
							| 109 | 108 | rabbidv | ⊢ ( 𝑥  =  𝑎  →  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  =  { 𝑦  ∈  𝐵  ∣  𝑎 𝑟 𝑦 } ) | 
						
							| 110 |  | breq2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑎 𝑟 𝑦  ↔  𝑎 𝑟 𝑏 ) ) | 
						
							| 111 | 110 | cbvrabv | ⊢ { 𝑦  ∈  𝐵  ∣  𝑎 𝑟 𝑦 }  =  { 𝑏  ∈  𝐵  ∣  𝑎 𝑟 𝑏 } | 
						
							| 112 | 109 111 | eqtrdi | ⊢ ( 𝑥  =  𝑎  →  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 }  =  { 𝑏  ∈  𝐵  ∣  𝑎 𝑟 𝑏 } ) | 
						
							| 113 | 112 | cbvmptv | ⊢ ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } )  =  ( 𝑎  ∈  𝐴  ↦  { 𝑏  ∈  𝐵  ∣  𝑎 𝑟 𝑏 } ) | 
						
							| 114 | 107 113 | eqtrdi | ⊢ ( ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  ∧  𝑢  ∈  𝐴 )  →  𝑓  =  ( 𝑎  ∈  𝐴  ↦  { 𝑏  ∈  𝐵  ∣  𝑎 𝑟 𝑏 } ) ) | 
						
							| 115 |  | breq1 | ⊢ ( 𝑎  =  𝑢  →  ( 𝑎 𝑟 𝑏  ↔  𝑢 𝑟 𝑏 ) ) | 
						
							| 116 | 115 | rabbidv | ⊢ ( 𝑎  =  𝑢  →  { 𝑏  ∈  𝐵  ∣  𝑎 𝑟 𝑏 }  =  { 𝑏  ∈  𝐵  ∣  𝑢 𝑟 𝑏 } ) | 
						
							| 117 | 116 | adantl | ⊢ ( ( ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  ∧  𝑢  ∈  𝐴 )  ∧  𝑎  =  𝑢 )  →  { 𝑏  ∈  𝐵  ∣  𝑎 𝑟 𝑏 }  =  { 𝑏  ∈  𝐵  ∣  𝑢 𝑟 𝑏 } ) | 
						
							| 118 |  | simpr | ⊢ ( ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  ∧  𝑢  ∈  𝐴 )  →  𝑢  ∈  𝐴 ) | 
						
							| 119 |  | rabexg | ⊢ ( 𝐵  ∈  𝑊  →  { 𝑏  ∈  𝐵  ∣  𝑢 𝑟 𝑏 }  ∈  V ) | 
						
							| 120 | 119 | ad3antrrr | ⊢ ( ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  ∧  𝑢  ∈  𝐴 )  →  { 𝑏  ∈  𝐵  ∣  𝑢 𝑟 𝑏 }  ∈  V ) | 
						
							| 121 | 114 117 118 120 | fvmptd | ⊢ ( ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑢 )  =  { 𝑏  ∈  𝐵  ∣  𝑢 𝑟 𝑏 } ) | 
						
							| 122 | 121 | eleq2d | ⊢ ( ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  ∧  𝑢  ∈  𝐴 )  →  ( 𝑣  ∈  ( 𝑓 ‘ 𝑢 )  ↔  𝑣  ∈  { 𝑏  ∈  𝐵  ∣  𝑢 𝑟 𝑏 } ) ) | 
						
							| 123 | 122 | pm5.32da | ⊢ ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) )  ↔  ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  { 𝑏  ∈  𝐵  ∣  𝑢 𝑟 𝑏 } ) ) ) | 
						
							| 124 |  | simplr | ⊢ ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 125 | 124 | elpwid | ⊢ ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  𝑟  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 126 | 65 93 | opeldm | ⊢ ( 〈 𝑢 ,  𝑣 〉  ∈  𝑟  →  𝑢  ∈  dom  𝑟 ) | 
						
							| 127 |  | dmss | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  dom  𝑟  ⊆  dom  ( 𝐴  ×  𝐵 ) ) | 
						
							| 128 |  | dmxpss | ⊢ dom  ( 𝐴  ×  𝐵 )  ⊆  𝐴 | 
						
							| 129 | 127 128 | sstrdi | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  dom  𝑟  ⊆  𝐴 ) | 
						
							| 130 | 129 | sseld | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  ( 𝑢  ∈  dom  𝑟  →  𝑢  ∈  𝐴 ) ) | 
						
							| 131 | 126 130 | syl5 | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  ( 〈 𝑢 ,  𝑣 〉  ∈  𝑟  →  𝑢  ∈  𝐴 ) ) | 
						
							| 132 | 131 | pm4.71rd | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  ( 〈 𝑢 ,  𝑣 〉  ∈  𝑟  ↔  ( 𝑢  ∈  𝐴  ∧  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) ) ) | 
						
							| 133 | 65 93 | opelrn | ⊢ ( 〈 𝑢 ,  𝑣 〉  ∈  𝑟  →  𝑣  ∈  ran  𝑟 ) | 
						
							| 134 |  | rnss | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  ran  𝑟  ⊆  ran  ( 𝐴  ×  𝐵 ) ) | 
						
							| 135 |  | rnxpss | ⊢ ran  ( 𝐴  ×  𝐵 )  ⊆  𝐵 | 
						
							| 136 | 134 135 | sstrdi | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  ran  𝑟  ⊆  𝐵 ) | 
						
							| 137 | 136 | sseld | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  ( 𝑣  ∈  ran  𝑟  →  𝑣  ∈  𝐵 ) ) | 
						
							| 138 | 133 137 | syl5 | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  ( 〈 𝑢 ,  𝑣 〉  ∈  𝑟  →  𝑣  ∈  𝐵 ) ) | 
						
							| 139 | 138 | pm4.71rd | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  ( 〈 𝑢 ,  𝑣 〉  ∈  𝑟  ↔  ( 𝑣  ∈  𝐵  ∧  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) ) ) | 
						
							| 140 | 139 | anbi2d | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  ( ( 𝑢  ∈  𝐴  ∧  〈 𝑢 ,  𝑣 〉  ∈  𝑟 )  ↔  ( 𝑢  ∈  𝐴  ∧  ( 𝑣  ∈  𝐵  ∧  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) ) ) ) | 
						
							| 141 | 132 140 | bitrd | ⊢ ( 𝑟  ⊆  ( 𝐴  ×  𝐵 )  →  ( 〈 𝑢 ,  𝑣 〉  ∈  𝑟  ↔  ( 𝑢  ∈  𝐴  ∧  ( 𝑣  ∈  𝐵  ∧  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) ) ) ) | 
						
							| 142 | 125 141 | syl | ⊢ ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  ( 〈 𝑢 ,  𝑣 〉  ∈  𝑟  ↔  ( 𝑢  ∈  𝐴  ∧  ( 𝑣  ∈  𝐵  ∧  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) ) ) ) | 
						
							| 143 | 106 123 142 | 3bitr4d | ⊢ ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  ( ( 𝑢  ∈  𝐴  ∧  𝑣  ∈  ( 𝑓 ‘ 𝑢 ) )  ↔  〈 𝑢 ,  𝑣 〉  ∈  𝑟 ) ) | 
						
							| 144 | 100 143 | bitr2id | ⊢ ( ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  ( 〈 𝑢 ,  𝑣 〉  ∈  𝑟  ↔  〈 𝑢 ,  𝑣 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) ) | 
						
							| 145 | 144 | eqrelrdv2 | ⊢ ( ( ( Rel  𝑟  ∧  Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ∧  ( ( 𝐵  ∈  𝑊  ∧  𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) )  →  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) | 
						
							| 146 | 87 89 92 145 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) | 
						
							| 147 | 81 146 | impbida | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ∧  𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) )  →  ( 𝑟  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) }  ↔  𝑓  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 148 | 5 14 30 147 | f1ocnv2d | ⊢ ( 𝜑  →  ( ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) : 𝒫  ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝐴 )  ∧  ◡ ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) ) ) | 
						
							| 149 | 1 2 3 | rfovd | ⊢ ( 𝜑  →  ( 𝐴 𝑂 𝐵 )  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 150 | 4 149 | eqtrid | ⊢ ( 𝜑  →  𝐹  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 151 |  | f1oeq1 | ⊢ ( 𝐹  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  ( 𝐹 : 𝒫  ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝐴 )  ↔  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) : 𝒫  ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝐴 ) ) ) | 
						
							| 152 |  | cnveq | ⊢ ( 𝐹  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  ◡ 𝐹  =  ◡ ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 153 | 152 | eqeq1d | ⊢ ( 𝐹  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  ( ◡ 𝐹  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } )  ↔  ◡ ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) ) ) | 
						
							| 154 | 151 153 | anbi12d | ⊢ ( 𝐹  =  ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  →  ( ( 𝐹 : 𝒫  ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝐴 )  ∧  ◡ 𝐹  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) )  ↔  ( ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) : 𝒫  ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝐴 )  ∧  ◡ ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) ) ) ) | 
						
							| 155 | 150 154 | syl | ⊢ ( 𝜑  →  ( ( 𝐹 : 𝒫  ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝐴 )  ∧  ◡ 𝐹  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) )  ↔  ( ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) ) : 𝒫  ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝐴 )  ∧  ◡ ( 𝑟  ∈  𝒫  ( 𝐴  ×  𝐵 )  ↦  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑟 𝑦 } ) )  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) ) ) ) | 
						
							| 156 | 148 155 | mpbird | ⊢ ( 𝜑  →  ( 𝐹 : 𝒫  ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝐴 )  ∧  ◡ 𝐹  =  ( 𝑓  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑓 ‘ 𝑥 ) ) } ) ) ) |