Step |
Hyp |
Ref |
Expression |
1 |
|
rfovd.rf |
⊢ 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥 ∈ 𝑎 ↦ { 𝑦 ∈ 𝑏 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
2 |
|
rfovd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
rfovd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
4 |
|
rfovcnvf1od.f |
⊢ 𝐹 = ( 𝐴 𝑂 𝐵 ) |
5 |
|
eqid |
⊢ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
6 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ⊆ 𝐵 |
7 |
6
|
a1i |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ⊆ 𝐵 ) |
8 |
3 7
|
sselpwd |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ 𝒫 𝐵 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ 𝒫 𝐵 ) |
10 |
9
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) : 𝐴 ⟶ 𝒫 𝐵 ) |
11 |
3
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝐵 ∈ V ) |
12 |
11 2
|
elmapd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) : 𝐴 ⟶ 𝒫 𝐵 ) ) |
13 |
10 12
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) |
15 |
2 3
|
xpexd |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → ( 𝐴 × 𝐵 ) ∈ V ) |
17 |
11 2
|
elmapd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) ) |
18 |
17
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) |
19 |
18
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝒫 𝐵 ) |
20 |
19
|
ex |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑓 ‘ 𝑥 ) ∈ 𝒫 𝐵 ) ) |
21 |
|
elpwi |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝒫 𝐵 → ( 𝑓 ‘ 𝑥 ) ⊆ 𝐵 ) |
22 |
21
|
sseld |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝒫 𝐵 → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
23 |
20 22
|
syl6 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) ) |
24 |
23
|
imdistand |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
25 |
|
trud |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → ⊤ ) |
26 |
24 25
|
jca2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ⊤ ) ) ) |
27 |
26
|
ssopab2dv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ⊤ ) } ) |
28 |
|
opabssxp |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ⊤ ) } ⊆ ( 𝐴 × 𝐵 ) |
29 |
27 28
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ⊆ ( 𝐴 × 𝐵 ) ) |
30 |
16 29
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
31 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) |
32 |
|
elmapfn |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → 𝑓 Fn 𝐴 ) |
33 |
31 32
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑓 Fn 𝐴 ) |
34 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝐵 ∈ 𝑊 ) |
35 |
|
rabexg |
⊢ ( 𝐵 ∈ 𝑊 → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ V ) |
36 |
35
|
ralrimivw |
⊢ ( 𝐵 ∈ 𝑊 → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ V ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
38 |
37
|
fnmptf |
⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ V → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) Fn 𝐴 ) |
39 |
34 36 38
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) Fn 𝐴 ) |
40 |
|
dfin5 |
⊢ ( 𝐵 ∩ ( 𝑓 ‘ 𝑢 ) ) = { 𝑏 ∈ 𝐵 ∣ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) } |
41 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) |
42 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) |
43 |
41 42
|
simpl2im |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) |
44 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝐴 ) |
45 |
43 44
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑢 ) ∈ 𝒫 𝐵 ) |
46 |
45
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑢 ) ⊆ 𝐵 ) |
47 |
|
sseqin2 |
⊢ ( ( 𝑓 ‘ 𝑢 ) ⊆ 𝐵 ↔ ( 𝐵 ∩ ( 𝑓 ‘ 𝑢 ) ) = ( 𝑓 ‘ 𝑢 ) ) |
48 |
46 47
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝐵 ∩ ( 𝑓 ‘ 𝑢 ) ) = ( 𝑓 ‘ 𝑢 ) ) |
49 |
|
ibar |
⊢ ( 𝑢 ∈ 𝐴 → ( 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) |
50 |
49
|
rabbidv |
⊢ ( 𝑢 ∈ 𝐴 → { 𝑏 ∈ 𝐵 ∣ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) } = { 𝑏 ∈ 𝐵 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) |
51 |
50
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → { 𝑏 ∈ 𝐵 ∣ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) } = { 𝑏 ∈ 𝐵 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) |
52 |
40 48 51
|
3eqtr3a |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑢 ) = { 𝑏 ∈ 𝐵 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) |
53 |
|
breq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑟 𝑏 ) ) |
54 |
53
|
cbvrabv |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } = { 𝑏 ∈ 𝐵 ∣ 𝑥 𝑟 𝑏 } |
55 |
|
breq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝑟 𝑏 ↔ 𝑎 𝑟 𝑏 ) ) |
56 |
|
df-br |
⊢ ( 𝑎 𝑟 𝑏 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑟 ) |
57 |
55 56
|
bitrdi |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝑟 𝑏 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑟 ) ) |
58 |
57
|
rabbidv |
⊢ ( 𝑥 = 𝑎 → { 𝑏 ∈ 𝐵 ∣ 𝑥 𝑟 𝑏 } = { 𝑏 ∈ 𝐵 ∣ 〈 𝑎 , 𝑏 〉 ∈ 𝑟 } ) |
59 |
54 58
|
syl5eq |
⊢ ( 𝑥 = 𝑎 → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } = { 𝑏 ∈ 𝐵 ∣ 〈 𝑎 , 𝑏 〉 ∈ 𝑟 } ) |
60 |
59
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) = ( 𝑎 ∈ 𝐴 ↦ { 𝑏 ∈ 𝐵 ∣ 〈 𝑎 , 𝑏 〉 ∈ 𝑟 } ) |
61 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑎 = 𝑢 ) → 𝑎 = 𝑢 ) |
62 |
61
|
opeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑎 = 𝑢 ) → 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑏 〉 ) |
63 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑎 = 𝑢 ) → 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
64 |
62 63
|
eleq12d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑎 = 𝑢 ) → ( 〈 𝑎 , 𝑏 〉 ∈ 𝑟 ↔ 〈 𝑢 , 𝑏 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) |
65 |
|
vex |
⊢ 𝑢 ∈ V |
66 |
|
vex |
⊢ 𝑏 ∈ V |
67 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑏 ) → 𝑥 = 𝑢 ) |
68 |
67
|
eleq1d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑏 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴 ) ) |
69 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑏 ) → 𝑦 = 𝑏 ) |
70 |
67
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑏 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑢 ) ) |
71 |
69 70
|
eleq12d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑏 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
72 |
68 71
|
anbi12d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑏 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) |
73 |
65 66 72
|
opelopaba |
⊢ ( 〈 𝑢 , 𝑏 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
74 |
64 73
|
bitrdi |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑎 = 𝑢 ) → ( 〈 𝑎 , 𝑏 〉 ∈ 𝑟 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) |
75 |
74
|
rabbidv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑎 = 𝑢 ) → { 𝑏 ∈ 𝐵 ∣ 〈 𝑎 , 𝑏 〉 ∈ 𝑟 } = { 𝑏 ∈ 𝐵 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) |
76 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
77 |
|
rabexg |
⊢ ( 𝐵 ∈ 𝑊 → { 𝑏 ∈ 𝐵 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) } ∈ V ) |
78 |
76 77
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → { 𝑏 ∈ 𝐵 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) } ∈ V ) |
79 |
60 75 44 78
|
fvmptd2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ‘ 𝑢 ) = { 𝑏 ∈ 𝐵 ∣ ( 𝑢 ∈ 𝐴 ∧ 𝑏 ∈ ( 𝑓 ‘ 𝑢 ) ) } ) |
80 |
52 79
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑢 ) = ( ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ‘ 𝑢 ) ) |
81 |
33 39 80
|
eqfnfvd |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
82 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
83 |
82
|
elpwid |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 ⊆ ( 𝐴 × 𝐵 ) ) |
84 |
|
xpss |
⊢ ( 𝐴 × 𝐵 ) ⊆ ( V × V ) |
85 |
83 84
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 ⊆ ( V × V ) ) |
86 |
|
df-rel |
⊢ ( Rel 𝑟 ↔ 𝑟 ⊆ ( V × V ) ) |
87 |
85 86
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → Rel 𝑟 ) |
88 |
|
relopabv |
⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
89 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
90 |
|
simpl |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
91 |
3 90
|
anim12i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) → ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) |
92 |
91
|
anim1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
93 |
|
vex |
⊢ 𝑣 ∈ V |
94 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 = 𝑢 ) |
95 |
94
|
eleq1d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴 ) ) |
96 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) |
97 |
94
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑢 ) ) |
98 |
96 97
|
eleq12d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
99 |
95 98
|
anbi12d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) |
100 |
65 93 99
|
opelopaba |
⊢ ( 〈 𝑢 , 𝑣 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
101 |
|
breq2 |
⊢ ( 𝑏 = 𝑣 → ( 𝑢 𝑟 𝑏 ↔ 𝑢 𝑟 𝑣 ) ) |
102 |
|
df-br |
⊢ ( 𝑢 𝑟 𝑣 ↔ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) |
103 |
101 102
|
bitrdi |
⊢ ( 𝑏 = 𝑣 → ( 𝑢 𝑟 𝑏 ↔ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ) |
104 |
103
|
elrab |
⊢ ( 𝑣 ∈ { 𝑏 ∈ 𝐵 ∣ 𝑢 𝑟 𝑏 } ↔ ( 𝑣 ∈ 𝐵 ∧ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ) |
105 |
104
|
anbi2i |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ { 𝑏 ∈ 𝐵 ∣ 𝑢 𝑟 𝑏 } ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑣 ∈ 𝐵 ∧ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ) ) |
106 |
105
|
a1i |
⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ { 𝑏 ∈ 𝐵 ∣ 𝑢 𝑟 𝑏 } ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑣 ∈ 𝐵 ∧ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ) ) ) |
107 |
|
simplr |
⊢ ( ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
108 |
|
breq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝑟 𝑦 ↔ 𝑎 𝑟 𝑦 ) ) |
109 |
108
|
rabbidv |
⊢ ( 𝑥 = 𝑎 → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } = { 𝑦 ∈ 𝐵 ∣ 𝑎 𝑟 𝑦 } ) |
110 |
|
breq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 𝑟 𝑦 ↔ 𝑎 𝑟 𝑏 ) ) |
111 |
110
|
cbvrabv |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑎 𝑟 𝑦 } = { 𝑏 ∈ 𝐵 ∣ 𝑎 𝑟 𝑏 } |
112 |
109 111
|
eqtrdi |
⊢ ( 𝑥 = 𝑎 → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } = { 𝑏 ∈ 𝐵 ∣ 𝑎 𝑟 𝑏 } ) |
113 |
112
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) = ( 𝑎 ∈ 𝐴 ↦ { 𝑏 ∈ 𝐵 ∣ 𝑎 𝑟 𝑏 } ) |
114 |
107 113
|
eqtrdi |
⊢ ( ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑓 = ( 𝑎 ∈ 𝐴 ↦ { 𝑏 ∈ 𝐵 ∣ 𝑎 𝑟 𝑏 } ) ) |
115 |
|
breq1 |
⊢ ( 𝑎 = 𝑢 → ( 𝑎 𝑟 𝑏 ↔ 𝑢 𝑟 𝑏 ) ) |
116 |
115
|
rabbidv |
⊢ ( 𝑎 = 𝑢 → { 𝑏 ∈ 𝐵 ∣ 𝑎 𝑟 𝑏 } = { 𝑏 ∈ 𝐵 ∣ 𝑢 𝑟 𝑏 } ) |
117 |
116
|
adantl |
⊢ ( ( ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑎 = 𝑢 ) → { 𝑏 ∈ 𝐵 ∣ 𝑎 𝑟 𝑏 } = { 𝑏 ∈ 𝐵 ∣ 𝑢 𝑟 𝑏 } ) |
118 |
|
simpr |
⊢ ( ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝐴 ) |
119 |
|
rabexg |
⊢ ( 𝐵 ∈ 𝑊 → { 𝑏 ∈ 𝐵 ∣ 𝑢 𝑟 𝑏 } ∈ V ) |
120 |
119
|
ad3antrrr |
⊢ ( ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑢 ∈ 𝐴 ) → { 𝑏 ∈ 𝐵 ∣ 𝑢 𝑟 𝑏 } ∈ V ) |
121 |
114 117 118 120
|
fvmptd |
⊢ ( ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑢 ) = { 𝑏 ∈ 𝐵 ∣ 𝑢 𝑟 𝑏 } ) |
122 |
121
|
eleq2d |
⊢ ( ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ↔ 𝑣 ∈ { 𝑏 ∈ 𝐵 ∣ 𝑢 𝑟 𝑏 } ) ) |
123 |
122
|
pm5.32da |
⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ { 𝑏 ∈ 𝐵 ∣ 𝑢 𝑟 𝑏 } ) ) ) |
124 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
125 |
124
|
elpwid |
⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 ⊆ ( 𝐴 × 𝐵 ) ) |
126 |
65 93
|
opeldm |
⊢ ( 〈 𝑢 , 𝑣 〉 ∈ 𝑟 → 𝑢 ∈ dom 𝑟 ) |
127 |
|
dmss |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑟 ⊆ dom ( 𝐴 × 𝐵 ) ) |
128 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 |
129 |
127 128
|
sstrdi |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑟 ⊆ 𝐴 ) |
130 |
129
|
sseld |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑢 ∈ dom 𝑟 → 𝑢 ∈ 𝐴 ) ) |
131 |
126 130
|
syl5 |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑟 → 𝑢 ∈ 𝐴 ) ) |
132 |
131
|
pm4.71rd |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ↔ ( 𝑢 ∈ 𝐴 ∧ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ) ) |
133 |
65 93
|
opelrn |
⊢ ( 〈 𝑢 , 𝑣 〉 ∈ 𝑟 → 𝑣 ∈ ran 𝑟 ) |
134 |
|
rnss |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑟 ⊆ ran ( 𝐴 × 𝐵 ) ) |
135 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
136 |
134 135
|
sstrdi |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑟 ⊆ 𝐵 ) |
137 |
136
|
sseld |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑣 ∈ ran 𝑟 → 𝑣 ∈ 𝐵 ) ) |
138 |
133 137
|
syl5 |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑟 → 𝑣 ∈ 𝐵 ) ) |
139 |
138
|
pm4.71rd |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ↔ ( 𝑣 ∈ 𝐵 ∧ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ) ) |
140 |
139
|
anbi2d |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → ( ( 𝑢 ∈ 𝐴 ∧ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑣 ∈ 𝐵 ∧ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ) ) ) |
141 |
132 140
|
bitrd |
⊢ ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑣 ∈ 𝐵 ∧ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ) ) ) |
142 |
125 141
|
syl |
⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ↔ ( 𝑢 ∈ 𝐴 ∧ ( 𝑣 ∈ 𝐵 ∧ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ) ) ) |
143 |
106 123 142
|
3bitr4d |
⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝑓 ‘ 𝑢 ) ) ↔ 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ) ) |
144 |
100 143
|
bitr2id |
⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑟 ↔ 〈 𝑢 , 𝑣 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) |
145 |
144
|
eqrelrdv2 |
⊢ ( ( ( Rel 𝑟 ∧ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ ( ( 𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) → 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
146 |
87 89 92 145
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
147 |
81 146
|
impbida |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) → ( 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
148 |
5 14 30 147
|
f1ocnv2d |
⊢ ( 𝜑 → ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) : 𝒫 ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ ◡ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) ) |
149 |
1 2 3
|
rfovd |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ) = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
150 |
4 149
|
syl5eq |
⊢ ( 𝜑 → 𝐹 = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
151 |
|
f1oeq1 |
⊢ ( 𝐹 = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝐹 : 𝒫 ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝐴 ) ↔ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) : 𝒫 ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝐴 ) ) ) |
152 |
|
cnveq |
⊢ ( 𝐹 = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ◡ 𝐹 = ◡ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
153 |
152
|
eqeq1d |
⊢ ( 𝐹 = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( ◡ 𝐹 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ↔ ◡ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) ) |
154 |
151 153
|
anbi12d |
⊢ ( 𝐹 = ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( ( 𝐹 : 𝒫 ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ ◡ 𝐹 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) ↔ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) : 𝒫 ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ ◡ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) ) ) |
155 |
150 154
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 : 𝒫 ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ ◡ 𝐹 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) ↔ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) : 𝒫 ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ ◡ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↦ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) ) ) |
156 |
148 155
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 : 𝒫 ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ ◡ 𝐹 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) ) |