| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rfovd.rf | ⊢ 𝑂  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ( 𝑥  ∈  𝑎  ↦  { 𝑦  ∈  𝑏  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 2 |  | rfovd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | rfovd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 4 |  | rfovfvd.r | ⊢ ( 𝜑  →  𝑅  ∈  𝒫  ( 𝐴  ×  𝐵 ) ) | 
						
							| 5 |  | rfovfvd.f | ⊢ 𝐹  =  ( 𝐴 𝑂 𝐵 ) | 
						
							| 6 |  | rfovfvfvd.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐴 ) | 
						
							| 7 |  | rfovfvfvd.g | ⊢ 𝐺  =  ( 𝐹 ‘ 𝑅 ) | 
						
							| 8 | 1 2 3 4 5 | rfovfvd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑅 𝑦 } ) ) | 
						
							| 9 | 7 8 | eqtrid | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐴  ↦  { 𝑦  ∈  𝐵  ∣  𝑥 𝑅 𝑦 } ) ) | 
						
							| 10 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥 𝑅 𝑦  ↔  𝑋 𝑅 𝑦 ) ) | 
						
							| 11 | 10 | rabbidv | ⊢ ( 𝑥  =  𝑋  →  { 𝑦  ∈  𝐵  ∣  𝑥 𝑅 𝑦 }  =  { 𝑦  ∈  𝐵  ∣  𝑋 𝑅 𝑦 } ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  { 𝑦  ∈  𝐵  ∣  𝑥 𝑅 𝑦 }  =  { 𝑦  ∈  𝐵  ∣  𝑋 𝑅 𝑦 } ) | 
						
							| 13 |  | rabexg | ⊢ ( 𝐵  ∈  𝑊  →  { 𝑦  ∈  𝐵  ∣  𝑋 𝑅 𝑦 }  ∈  V ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐵  ∣  𝑋 𝑅 𝑦 }  ∈  V ) | 
						
							| 15 | 9 12 6 14 | fvmptd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  =  { 𝑦  ∈  𝐵  ∣  𝑋 𝑅 𝑦 } ) |