Metamath Proof Explorer


Theorem fsovfd

Description: The operator, ( A O B ) , which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, A and B , gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021)

Ref Expression
Hypotheses fsovd.fs
|- O = ( a e. _V , b e. _V |-> ( f e. ( ~P b ^m a ) |-> ( y e. b |-> { x e. a | y e. ( f ` x ) } ) ) )
fsovd.a
|- ( ph -> A e. V )
fsovd.b
|- ( ph -> B e. W )
fsovfvd.g
|- G = ( A O B )
Assertion fsovfd
|- ( ph -> G : ( ~P B ^m A ) --> ( ~P A ^m B ) )

Proof

Step Hyp Ref Expression
1 fsovd.fs
 |-  O = ( a e. _V , b e. _V |-> ( f e. ( ~P b ^m a ) |-> ( y e. b |-> { x e. a | y e. ( f ` x ) } ) ) )
2 fsovd.a
 |-  ( ph -> A e. V )
3 fsovd.b
 |-  ( ph -> B e. W )
4 fsovfvd.g
 |-  G = ( A O B )
5 1 2 3 fsovd
 |-  ( ph -> ( A O B ) = ( f e. ( ~P B ^m A ) |-> ( y e. B |-> { x e. A | y e. ( f ` x ) } ) ) )
6 4 5 eqtrid
 |-  ( ph -> G = ( f e. ( ~P B ^m A ) |-> ( y e. B |-> { x e. A | y e. ( f ` x ) } ) ) )
7 ssrab2
 |-  { x e. A | y e. ( f ` x ) } C_ A
8 7 a1i
 |-  ( ph -> { x e. A | y e. ( f ` x ) } C_ A )
9 2 8 sselpwd
 |-  ( ph -> { x e. A | y e. ( f ` x ) } e. ~P A )
10 9 adantr
 |-  ( ( ph /\ y e. B ) -> { x e. A | y e. ( f ` x ) } e. ~P A )
11 10 fmpttd
 |-  ( ph -> ( y e. B |-> { x e. A | y e. ( f ` x ) } ) : B --> ~P A )
12 2 pwexd
 |-  ( ph -> ~P A e. _V )
13 12 3 elmapd
 |-  ( ph -> ( ( y e. B |-> { x e. A | y e. ( f ` x ) } ) e. ( ~P A ^m B ) <-> ( y e. B |-> { x e. A | y e. ( f ` x ) } ) : B --> ~P A ) )
14 11 13 mpbird
 |-  ( ph -> ( y e. B |-> { x e. A | y e. ( f ` x ) } ) e. ( ~P A ^m B ) )
15 14 adantr
 |-  ( ( ph /\ f e. ( ~P B ^m A ) ) -> ( y e. B |-> { x e. A | y e. ( f ` x ) } ) e. ( ~P A ^m B ) )
16 6 15 fmpt3d
 |-  ( ph -> G : ( ~P B ^m A ) --> ( ~P A ^m B ) )