Metamath Proof Explorer


Theorem fsovfd

Description: The operator, ( A O B ) , which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, A and B , gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021)

Ref Expression
Hypotheses fsovd.fs O=aV,bVf𝒫baybxa|yfx
fsovd.a φAV
fsovd.b φBW
fsovfvd.g G=AOB
Assertion fsovfd φG:𝒫BA𝒫AB

Proof

Step Hyp Ref Expression
1 fsovd.fs O=aV,bVf𝒫baybxa|yfx
2 fsovd.a φAV
3 fsovd.b φBW
4 fsovfvd.g G=AOB
5 1 2 3 fsovd φAOB=f𝒫BAyBxA|yfx
6 4 5 eqtrid φG=f𝒫BAyBxA|yfx
7 ssrab2 xA|yfxA
8 7 a1i φxA|yfxA
9 2 8 sselpwd φxA|yfx𝒫A
10 9 adantr φyBxA|yfx𝒫A
11 10 fmpttd φyBxA|yfx:B𝒫A
12 2 pwexd φ𝒫AV
13 12 3 elmapd φyBxA|yfx𝒫AByBxA|yfx:B𝒫A
14 11 13 mpbird φyBxA|yfx𝒫AB
15 14 adantr φf𝒫BAyBxA|yfx𝒫AB
16 6 15 fmpt3d φG:𝒫BA𝒫AB