Metamath Proof Explorer


Theorem ntrneicnv

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then converse of F is known. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneicnv φ F -1 = B O 𝒫 B

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 1 2 3 ntrneibex φ B V
5 4 pwexd φ 𝒫 B V
6 eqid B O 𝒫 B = B O 𝒫 B
7 1 5 4 2 6 fsovcnvd φ F -1 = B O 𝒫 B