Metamath Proof Explorer


Theorem numadd

Description: Add two decimal integers M and N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses numma.1 T0
numma.2 A0
numma.3 B0
numma.4 C0
numma.5 D0
numma.6 M=TA+B
numma.7 N=TC+D
numadd.8 A+C=E
numadd.9 B+D=F
Assertion numadd M+N=TE+F

Proof

Step Hyp Ref Expression
1 numma.1 T0
2 numma.2 A0
3 numma.3 B0
4 numma.4 C0
5 numma.5 D0
6 numma.6 M=TA+B
7 numma.7 N=TC+D
8 numadd.8 A+C=E
9 numadd.9 B+D=F
10 1 2 3 numcl TA+B0
11 6 10 eqeltri M0
12 11 nn0cni M
13 12 mulridi M1=M
14 13 oveq1i M1+N=M+N
15 1nn0 10
16 2 nn0cni A
17 16 mulridi A1=A
18 17 oveq1i A1+C=A+C
19 18 8 eqtri A1+C=E
20 3 nn0cni B
21 20 mulridi B1=B
22 21 oveq1i B1+D=B+D
23 22 9 eqtri B1+D=F
24 1 2 3 4 5 6 7 15 19 23 numma M1+N=TE+F
25 14 24 eqtr3i M+N=TE+F