Metamath Proof Explorer


Theorem numexp2x

Description: Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses numexp.1 A0
numexpp1.2 M0
numexp2x.3 2 M=N
numexp2x.4 AM=D
numexp2x.5 DD=C
Assertion numexp2x AN=C

Proof

Step Hyp Ref Expression
1 numexp.1 A0
2 numexpp1.2 M0
3 numexp2x.3 2 M=N
4 numexp2x.4 AM=D
5 numexp2x.5 DD=C
6 2 nn0cni M
7 6 2timesi 2 M=M+M
8 3 7 eqtr3i N=M+M
9 8 oveq2i AN=AM+M
10 1 nn0cni A
11 expadd AM0M0AM+M=AMAM
12 10 2 2 11 mp3an AM+M=AMAM
13 9 12 eqtri AN=AMAM
14 4 4 oveq12i AMAM=DD
15 14 5 eqtri AMAM=C
16 13 15 eqtri AN=C