Metamath Proof Explorer


Theorem nvmcl

Description: Closure law for the vector subtraction operation of a normed complex vector space. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvmf.1 X=BaseSetU
nvmf.3 M=-vU
Assertion nvmcl UNrmCVecAXBXAMBX

Proof

Step Hyp Ref Expression
1 nvmf.1 X=BaseSetU
2 nvmf.3 M=-vU
3 1 2 nvmf UNrmCVecM:X×XX
4 fovcdm M:X×XXAXBXAMBX
5 3 4 syl3an1 UNrmCVecAXBXAMBX